Bochner-Riesz profile of anharmonic oscillator L = -d2/dx2 + |x|

被引:4
作者
Chen, Peng [1 ]
Hebisch, Waldemar [2 ]
Sikora, Adam [3 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Spectral multipliers; Schrodinger operators; Bochner-Riesz means; Airy function; SHARP SPECTRAL MULTIPLIERS; RESTRICTION CONJECTURE; HERMITE EXPANSIONS; COMPACT MANIFOLDS; OPERATORS; EIGENFUNCTION; SUMMABILITY; SPACES; BOUNDS; INTEGRALS;
D O I
10.1016/j.jfa.2016.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate spectral multipliers, Bochner-Riesz means and the convergence of eigenfunction expansion corresponding to the Schrodinger operator with anharmonic potential L = -d(2)/dx(2) + vertical bar x vertical bar. We show that the Bochner-Riesz profile of the operator L completely coincides with such profile of the harmonic oscillator H = -d(2)/dx(2) + x(2). It is especially surprising because the Bochner-Riesz profile of the one-dimensional standard Laplace operator is known to be essentially different and the case of operators H and L resembles more the profile of multidimensional Laplace operators. Another surprising element of the main obtained result is the fact that the proof is not based on restriction type estimates and instead an entirely new perspective has to be developed to obtain the critical exponent for Bochner-Riesz means convergence. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3186 / 3241
页数:56
相关论文
共 43 条
[1]   SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH [J].
ALEXOPOULOS, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :973-979
[2]   LP FOURIER MULTIPLIERS ON RIEMANNIAN SYMMETRICAL SPACES OF THE NONCOMPACT TYPE [J].
ANKER, JP .
ANNALS OF MATHEMATICS, 1990, 132 (03) :597-628
[3]  
Askey R., 1965, Amer.J. Math, V87, P695, DOI DOI 10.2307/2373069
[4]   OSCILLATORY INTEGRALS AND A MULTIPLIER PROBLEM FOR DISK [J].
CARLESON, L ;
SJOLIN, P .
STUDIA MATHEMATICA, 1972, 44 (03) :287-&
[5]   RESTRICTION ESTIMATES, SHARP SPECTRAL MULTIPLIERS AND ENDPOINT ESTIMATES FOR BOCHNER-RIESZ MEANS [J].
Chen, Peng ;
Ouhabaz, El Maati ;
Sikora, Adam ;
Yan, Lixin .
JOURNAL D ANALYSE MATHEMATIQUE, 2016, 129 :219-283
[6]   THE WEAK TYPE-L1 CONVERGENCE OF EIGENFUNCTION-EXPANSIONS FOR PSEUDODIFFERENTIAL-OPERATORS [J].
CHRIST, FM ;
SOGGE, CD .
INVENTIONES MATHEMATICAE, 1988, 94 (02) :421-453
[7]   WEAK TYPE (1, 1) BOUNDS FOR ROUGH OPERATORS [J].
CHRIST, M .
ANNALS OF MATHEMATICS, 1988, 128 (01) :19-42
[9]   LP-MULTIPLIERS FOR NONCOMPACT SYMMETRIC SPACES [J].
CLERC, JL ;
STEIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :3911-3912
[10]   A spectral multiplier theorem for a sublaplacian on SU(2) [J].
Cowling, M ;
Sikora, A .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (01) :1-36