A new family of global methods for linear systems with multiple right-hand sides

被引:21
作者
Zhang, Jianhua [1 ]
Dai, Hua [2 ]
Zhao, Jing [1 ]
机构
[1] Anhui Sci & Technol Univ, Dept Math, Fengyang 233100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
关键词
Matrix Krylov subspace; Multiple right-hand sides; Gl-BCG; Nonsymmetric linear systems; Gl-BCR; Gl-CRS; CONJUGATE-GRADIENT ALGORITHM; KRYLOV SUBSPACE METHODS; BLOCK GMRES METHOD; MATRIX EQUATIONS; NONSYMMETRIC SYSTEMS; SYLVESTER EQUATIONS; PROJECTION METHODS; LANCZOS METHOD; COCR METHOD; VARIANTS;
D O I
10.1016/j.cam.2011.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global bi-conjugate gradient (Gl-BCG) method is an attractive matrix Krylov subspace method for solving nonsymmetric linear systems with multiple right-hand sides, but it often show irregular convergence behavior in many applications. In this paper, we present a new family of global A-biorthogonal methods by using short two-term recurrences and formal orthogonal polynomials, which contain the global bi-conjugate residual (Gl-BCR) algorithm and its improved version. Finally, numerical experiments illustrate that the proposed methods are highly competitive and often superior to originals. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1562 / 1575
页数:14
相关论文
共 44 条
[1]   BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices [J].
Abe, Kuniyoshi ;
Sleijpen, Gerard L. G. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) :985-994
[2]   New convergence results on the global GMRES method for diagonalizable matrices [J].
Bellalij, M. ;
Jbilou, K. ;
Sadok, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (02) :350-358
[3]   On block minimal residual methods [J].
Bouyouli, R. ;
Jbilou, K. ;
Messaoudi, A. ;
Sadok, H. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (03) :284-289
[4]   Analysis of projection methods for solving linear systems with multiple right-hand sides [J].
Chan, TF ;
Wan, WL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1698-1721
[5]  
Dai H., 2000, NUMER MATH J CHINESE, V9, P91
[6]   Deflated GMRES for systems with multiple shifts and multiple right-hand sides [J].
Darnell, Dean ;
Morgan, Ronald B. ;
Wilcox, Walter .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) :2415-2434
[7]   The block Lanczos method for linear systems with multiple right-hand sides [J].
El Guennouni, A ;
Jbilou, K ;
Sadok, H .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :243-256
[8]  
El Guennouni A, 2003, ELECTRON T NUMER ANA, V16, P129
[9]   Block Krylov subspace methods for solving large Sylvester equations [J].
El Guennouni, A ;
Jbilou, K ;
Riquet, AJ .
NUMERICAL ALGORITHMS, 2002, 29 (1-3) :75-96
[10]   A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides [J].
Freund, RW ;
Malhotra, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 254 :119-157