Seismic data random noise reduction using a method based on improved complementary ensemble EMD and adaptive interval threshold

被引:13
作者
Liu, Jicheng [1 ]
Gu, Ya [1 ]
Chou, Yongxin [1 ]
Gu, Jianfei [1 ]
机构
[1] Changshu Inst Technol, Sch Elect & Automat Engn, Changshu 215500, Jiangsu, Peoples R China
关键词
Seismic exploration; random noise attenuation; decomposition; EMPIRICAL MODE DECOMPOSITION; ATTENUATION; FILTER;
D O I
10.1080/08123985.2020.1777849
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Random noise attenuation is an important step in seismic signal processing. This paper develops a seismic denoising method which combines the improved complementary ensemble empirical mode decomposition (ICEEMD) and adaptive interval threshold. The seismic data are decomposed into intrinsic mode functions (IMFs) by ICEEMD, which can overcome the problem of uncertain number of modes when adding different random noise as well as the problems of spurious modes and the residual noise from using the ensemble empirical mode decomposition (EEMD) and the complementary ensemble empirical mode decomposition (CEEMD). After the decomposition, the noise in IMFs is filtered out by the adaptive interval threshold. The de-noised data are reconstructed by stacking the filtered IMFs. The proposed approach is validated via the synthetic and field data. The results demonstrate that the approach can effectively improve the de-noising performance.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 32 条
[1]   Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation [J].
Anvari, Rasoul ;
Siahsar, Mohammad Amir Nazari ;
Gholtashi, Saman ;
Kahoo, Amin Roshandel ;
Mohammadi, Mokhtar .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6574-6581
[2]  
Canales L. L., 1984, 54 ANN INT M SEG, P525
[3]  
Chen W, 2017, J SEISM EXPLOR, V26, P227
[4]  
Chen Y., 2015, GEOPHYSICS, V80, pWD1
[5]  
Chen YK, 2014, J SEISM EXPLOR, V23, P481
[6]  
Chen Yangkang, 2014, GEOPHYSICS, V79, pV81
[7]   Improved complete ensemble EMD: A suitable tool for biomedical signal processing [J].
Colominas, Marcelo A. ;
Schlotthauer, Gaston ;
Torres, Maria E. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 14 :19-29
[8]   Empirical mode decomposition as a filter bank [J].
Flandrin, P ;
Rilling, G ;
Gonçalvés, P .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) :112-114
[9]  
Flandrin P., 2005, HILBERT HUANG TRANSF, DOI [10.1142/9789812703347_0003, DOI 10.1142/9789812703347_0003]
[10]   Seislet transform and seislet frame [J].
Fomel, Sergey ;
Liu, Yang .
GEOPHYSICS, 2010, 75 (03) :V25-V38