Biological Significance and Targeting of the FGFR Axis in Cancer

被引:42
作者
Chioni, Athina-Myrto [1 ]
Grose, Richard P. [2 ]
机构
[1] Kingston Univ, Sch Life Sci Pharm & Chem, Penrhyn Rd, Kingston Upon Thames KT1 2EE, Surrey, England
[2] Queen Mary Univ London, Ctr Tumour Biol, Barts Canc Inst, Charterhouse Sq, London EC1M 6BQ, England
关键词
fibroblast growth factor; cancer; FGFR inhibitors; FGFR mutations; FGFR signalling; targeting FGFR; FIBROBLAST-GROWTH-FACTOR; GENOME-WIDE ASSOCIATION; FACTOR RECEPTOR; BREAST-CANCER; NUCLEAR TRANSLOCATION; MONOCLONAL-ANTIBODY; DOWN-REGULATION; LIGAND-BINDING; HEPATOCELLULAR-CARCINOMA; PROTEIN EXPRESSION;
D O I
10.3390/cancers13225681
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary: All cells within tissues and organ systems must communicate with each other to ensure they function in a coordinated manner. One form of communication is signalling mediated by small proteins (for example fibroblast growth factors; FGFs) that are secreted by one cell and bind to specialised receptors (for example FGF receptors) on nearby cells. These receptors propagate the signal to the nucleus of the receiving cell, which in turn dictates to the cell how it should react. FGFR signalling is versatile, tightly controlled and important for normal body homeostasis, facilitating growth, healing and replacing old cells. However, cancer cells can take command of this pathway and use it to their advantage. This review will first explain the biology of FGFR signalling and then describe how it can be corrupted, the implications in cancer, and how it can be targeted to improve cancer therapy. The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
引用
收藏
页数:27
相关论文
共 248 条
[1]   FGF10: Type III Epithelial Mesenchymal Transition and Invasion in Breast Cancer Cell Lines [J].
Abolhassani, Ali ;
Riazi, Gholam Hossein ;
Azizi, Ebrahim ;
Amanpour, Saeid ;
Muhammadnejad, Samad ;
Haddadi, Mahnaz ;
Zekri, Ali ;
Shirkoohi, Reza .
JOURNAL OF CANCER, 2014, 5 (07) :537-547
[2]   Monoclonal antibody therapy of cancer [J].
Adams, GP ;
Weiner, LM .
NATURE BIOTECHNOLOGY, 2005, 23 (09) :1147-1157
[3]   FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium [J].
Agarwal, D. ;
Pineda, S. ;
Michailidou, K. ;
Herranz, J. ;
Pita, G. ;
Moreno, L. T. ;
Alonso, M. R. ;
Dennis, J. ;
Wang, Q. ;
Bolla, M. K. ;
Meyer, K. B. ;
Menendez-Rodriguez, P. ;
Hardisson, D. ;
Mendiola, M. ;
Gonzalez-Neira, A. ;
Lindblom, A. ;
Margolin, S. ;
Swerdlow, A. ;
Ashworth, A. ;
Orr, N. ;
Jones, M. ;
Matsuo, K. ;
Ito, H. ;
Iwata, H. ;
Kondo, N. ;
Hartman, M. ;
Hui, M. ;
Lim, W. Y. ;
Iau, P. T-C ;
Sawyer, E. ;
Tomlinson, I. ;
Kerin, M. ;
Miller, N. ;
Kang, D. ;
Choi, J-Y ;
Park, S. K. ;
Noh, D-Y ;
Hopper, J. L. ;
Schmidt, D. F. ;
Makalic, E. ;
Southey, M. C. ;
Teo, S. H. ;
Yip, C. H. ;
Sivanandan, K. ;
Tay, W-T ;
Brauch, H. ;
Bruening, T. ;
Hamann, U. ;
Dunning, A. M. ;
Shah, M. .
BRITISH JOURNAL OF CANCER, 2014, 110 (04) :1088-1100
[4]   Mechanisms of FGFR-mediated carcinogenesis [J].
Ahmad, Imran ;
Iwata, Tomoko ;
Leung, Hing Y. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2012, 1823 (04) :850-860
[5]   A time-resolved live cell imaging assay to identify small molecule inhibitors of FGF2 signaling [J].
Ahmed, Mennatallah ;
Legrand, Cyril ;
Relimpio, Ana Yaguee ;
Beretta, Carlo A. ;
Muschko, Alina ;
Wegehingel, Sabine ;
Mueller, Hans-Michael ;
Sehr, Peter ;
Will, David W. ;
Lewis, Joe D. ;
Nickel, Walter .
FEBS LETTERS, 2019, 593 (16) :2162-2176
[6]   Grb2 monomer-dimer equilibrium determines normal versus oncogenic function [J].
Ahmed, Zamal ;
Timsah, Zahra ;
Suen, Kin M. ;
Cook, Nathan P. ;
Lee, Gilbert R. ;
Lin, Chi-Chuan ;
Gagea, Mihai ;
Marti, Angel A. ;
Ladbury, John E. .
NATURE COMMUNICATIONS, 2015, 6
[7]   A pilot study of Pan-FGFR inhibitor ponatinib in patients with FGFR-altered advanced cholangiocarcinoma [J].
Ahn, Daniel H. ;
Uson Junior, Pedro Luiz Serrano ;
Masci, Peter ;
Kosiorek, Heidi ;
Halfdanarson, Thorvardur R. ;
Mody, Kabir ;
Babiker, Hani ;
DeLeon, Thomas ;
Sonbol, Mohamad Bassam ;
Gores, Gregory ;
Smoot, Rory ;
Bekaii-Saab, Tanios ;
Mahipal, Amit ;
Mansfield, Aaron ;
Tran, Nguyen H. ;
Hubbard, Joleen M. ;
Borad, Mitesh J. .
INVESTIGATIONAL NEW DRUGS, 2022, 40 (01) :134-141
[8]   Sprouty Proteins Inhibit Receptor-mediated Activation of Phosphatidylinositol-specific Phospholipase C [J].
Akbulut, Simge ;
Reddi, Alagarsamy L. ;
Aggarwal, Priya ;
Ambardekar, Charuta ;
Canciani, Barbara ;
Kim, Marianne K. H. ;
Hix, Laura ;
Vilimas, Tomas ;
Mason, Jacqueline ;
Basson, M. Albert ;
Lovatt, Matthew ;
Powell, Jonathan ;
Collins, Samuel ;
Quatela, Steven ;
Phillips, Mark ;
Licht, Jonathan D. .
MOLECULAR BIOLOGY OF THE CELL, 2010, 21 (19) :3487-3496
[9]   Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies [J].
Akl, Mohamed R. ;
Nagpal, Poonam ;
Ayoub, Nehad M. ;
Tai, Betty ;
Prabhu, Sathyen A. ;
Capac, Catherine M. ;
Gliksman, Matthew ;
Goy, Andre ;
Suh, K. Stephen .
ONCOTARGET, 2016, 7 (28) :44735-44762
[10]   FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities [J].
Allerstorfer, S. ;
Sonvilla, G. ;
Fischer, H. ;
Spiegl-Kreinecker, S. ;
Gauglhofer, C. ;
Setinek, U. ;
Czech, T. ;
Marosi, C. ;
Buchroithner, J. ;
Pichler, J. ;
Silye, R. ;
Mohr, T. ;
Holzmann, K. ;
Grasl-Kraupp, B. ;
Marian, B. ;
Grusch, M. ;
Fischer, J. ;
Micksche, M. ;
Berger, W. .
ONCOGENE, 2008, 27 (30) :4180-4190