Multiclass Bearing Fault Classification Using Features Learned by a Deep Neural Network

被引:0
作者
Sahoo, Biswajit [1 ]
Mohanty, A. R. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
来源
INTERNATIONAL CONGRESS AND WORKSHOP ON INDUSTRIAL AI 2021 | 2022年
关键词
Fault classification; Data-driven methods; Deep learning; Support vector machines;
D O I
10.1007/978-3-030-93639-6_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate classification of faults is important for condition based maintenance (CBM) applications. There are mainly three approaches commonly used for fault classification, viz., model-based, data-driven, and hybrid models. Data-driven approaches are becoming increasingly popular in applications as these methods can be easily automated and achieve higher accuracy at different tasks. Data-driven approaches can be based on shallow learning or deep learning. In shallow learning, useful features are first calculated from raw time domain data. The features may pertain to time domain, or frequency domain, or time-frequency domain. These features are then fed into a machine learning algorithm that does fault classification. In contrast, deep learning models don't require any handcrafted features. Representations are learned automatically from data. Thus, deep learning models take raw time domain data as input and produce classification results as output in an end-to-end manner. This makes interpretation of deep learning models difficult. In this paper, we show that the classification ability of deep neural network is derived from hidden representations. Those hidden representations can be used as features in classical machine learning algorithms for fault classification. This helps in explaining the classification ability of different layers of representations of deep networks. This technique has been applied to a real-world bearing dataset producing promising results.
引用
收藏
页码:405 / 414
页数:10
相关论文
共 50 条
  • [21] Classification of Car Parts Using Deep Neural Network
    Khanal, Salik Ram
    Amorim, Eurico Vasco
    Filipe, Vitor
    CONTROLO 2020, 2021, 695 : 582 - 591
  • [22] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [23] Ensemble of the Deep Convolutional Network for Multiclass of Plant Disease Classification Using Leaf Images
    Li, Bo
    Tang, Jinhong
    Zhang, Yuejing
    Xie, Xin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (04)
  • [24] Fault classification of power plants using artificial neural network
    Hassan, Muhammad Sabbar
    Kamal, Khurram
    Ratlamwala, Tahir Abdul Hussain
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (03) : 7665 - 7680
  • [25] Fault Classification of Ball Bearings Using a Convolution Neural Network
    Ko, Han Byul
    Park, Hyung Joon
    Lee, Kwang Ki
    Han, Seung Ho
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2022, 46 (05) : 521 - 527
  • [26] Deep Neural Network based Bearing Fault Diagnosis of Induction Motor using Fast Fourier Transform Analysis
    Pandarakone, Shrinathan Esakimuthu
    Masuko, Makoto
    Mizuno, Yukio
    Nakamura, Hisahide
    2018 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2018, : 3214 - 3221
  • [27] Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network
    Islam, M. M. Manjurul
    Kim, Jong-Myon
    COMPUTERS IN INDUSTRY, 2019, 106 : 142 - 153
  • [28] Classification of Nuclei in Colon Cancer Images using Ensemble of Deep Learned Features
    Guzel, Kadir
    Bilgin, Gokhan
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 433 - 436
  • [29] Multiple hierarchical compression for deep neural network toward intelligent bearing fault diagnosis
    Sun, Jiedi
    Liu, Zhao
    Wen, Jiangtao
    Fu, Rongrong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [30] Bearing Fault Diagnosis Method of Deep Convolutional Neural Network Based on Multiwavelet Decomposition
    Tao T.
    Zhou W.
    Kuang J.
    Xu G.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 5 (31-41): : 31 - 41