A spectral condition for odd cycles in graphs

被引:64
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
odd cycle; triangle; graph spectral radius; stability;
D O I
10.1016/j.laa.2007.09.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of sufficiently large order n, and let the largest eigenvalue mu (G) of its adjacency matrix satisfies mu(G) > -root left perpendicular n(2)/4 right perpendicular. Then G contains a cycle of length t for every t <= n/320. This condition is sharp: the complete bipartite graph T-2(n) with parts of size left perpendicular n/2right perpendicular and inverted right perpendicular n/2 inverted left perpendicular contains no odd cycles and its largest eigenvalue is equal to root left perpendicular n(2)/4 right perpendicular. This condition is stable: if mu(G) is close to root left perpendicular n(2)/4 right perpendicular and G fails to contain a cycle of length t for some t <= n/321, then G resembles T-2(n). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1492 / 1498
页数:7
相关论文
共 7 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[3]   Cliques and the spectral radius [J].
Bollobas, Bela ;
Nikiforov, Vladimir .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :859-865
[4]  
Erdos P., 1959, Acta Math. Acad. Sci. Hungar., V10, P337, DOI DOI 10.1007/BF02024498
[5]   Cycle lengths in graphs with large minimum degree [J].
Nikiforov, V ;
Schelp, RH .
JOURNAL OF GRAPH THEORY, 2006, 52 (02) :157-170
[6]   Bounds on graph eigenvalues II [J].
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) :183-189
[7]  
Nosal E., 1970, THESIS U CALGARY