The 3p21.31 genetic locus promotes progression to type 1 diabetes through the CCR2/CCL2 pathway

被引:2
作者
Tran, Paul M. H. [1 ]
Purohit, Sharad [1 ,2 ,3 ]
Kim, Eileen [1 ]
bin Satter, Khaled [1 ]
Hopkins, Diane [1 ]
Waugh, Kathleen [4 ]
Dong, Fran [4 ]
Onengut-Gumuscu, Suna [5 ]
Rich, Stephen S. [5 ]
Rewers, Marian [4 ]
She, Jin-Xiong [1 ,2 ]
机构
[1] Med Coll Georgia, Ctr Biotechnol & Genom Med, 1120 15th St, Augusta, GA 30912 USA
[2] Augusta Univ, Med Coll Georgia, Dept Obstet & Gynecol, 1120 15th St, Augusta, GA 30912 USA
[3] Augusta Univ, Coll Allied Hlth Sci, Dept Undergrad Hlth Professionals, 1120 15th St, Augusta, GA 30912 USA
[4] Univ Colorado Denver, Barbara Davis Ctr Diabet, Mail Stop A-140,1775 Aurora Court, Aurora, CO 80045 USA
[5] Univ Virginia, Sch Med, Ctr Publ Hlth Genom, Charlottesville, VA 22908 USA
基金
美国国家卫生研究院;
关键词
CCR2; CCL2; MCP1; T1D; DAISY; Autoimmune; Fine mapping; MONOCYTE CHEMOATTRACTANT PROTEIN-1; MIGRATION INHIBITORY FACTOR; GENOME-WIDE ASSOCIATION; CORONARY-HEART-DISEASE; INTERLEUKIN-6; RECEPTOR; RHEUMATOID-ARTHRITIS; CHEMOKINE; CCR2; METAANALYSIS; AUTOIMMUNITY;
D O I
10.1016/j.jtauto.2021.100127
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway.
引用
收藏
页数:7
相关论文
共 50 条
[1]   CCR2 Regulates the Immune Response by Modulating the Interconversion and Function of Effector and Regulatory T Cells [J].
Bakos, Eszter ;
Thaiss, Christoph A. ;
Kramer, Matthias P. ;
Cohen, Sivan ;
Radomir, Lihi ;
Orr, Irit ;
Kaushansky, Nathali ;
Ben-Nun, Avraham ;
Becker-Herman, Shirly ;
Shachar, Idit .
JOURNAL OF IMMUNOLOGY, 2017, 198 (12) :4659-4671
[2]   Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].
Barrett, Jeffrey C. ;
Clayton, David G. ;
Concannon, Patrick ;
Akolkar, Beena ;
Cooper, Jason D. ;
Erlich, Henry A. ;
Julier, Cecile ;
Morahan, Grant ;
Nerup, Jorn ;
Nierras, Concepcion ;
Plagnol, Vincent ;
Pociot, Flemming ;
Schuilenburg, Helen ;
Smyth, Deborah J. ;
Stevens, Helen ;
Todd, John A. ;
Walker, Neil M. ;
Rich, Stephen S. .
NATURE GENETICS, 2009, 41 (06) :703-707
[3]   Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases [J].
Bose, Shambhunath ;
Cho, Jungsook .
ARCHIVES OF PHARMACAL RESEARCH, 2013, 36 (09) :1039-1050
[4]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[5]   Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy [J].
Chen, Cheng-Yu ;
Fuh, Lih-Jyh ;
Huang, Chien-Chung ;
Hsu, Chin-Jung ;
Su, Chen-Ming ;
Liu, Shan-Chi ;
Lin, Yu-Min ;
Tang, Chih-Hsin .
SCIENTIFIC REPORTS, 2017, 7
[6]   Promise and pitfalls of the Immunochip [J].
Cortes, Adrian ;
Brown, Matthew A. .
ARTHRITIS RESEARCH & THERAPY, 2011, 13 (01)
[7]   The role of chemokines and chemokine receptors in multiple sclerosis [J].
Cui, Li-Yuan ;
Chu, Shi-Feng ;
Chen, Nai-Hong .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 83
[8]   Changing the landscape for type 1 diabetes: the first step to prevention [J].
Dayan, Colin M. ;
Korah, Maria ;
Tatovic, Danijela ;
Bundy, Brian N. ;
Herold, Kevan C. .
LANCET, 2019, 394 (10205) :1286-1296
[9]   Type 1 diabetes [J].
DiMeglio, Linda A. ;
Evans-Molina, Carmella ;
Oram, Richard A. .
LANCET, 2018, 391 (10138) :2449-2462
[10]  
Draper N. R., 1998, APPL REGRESSION ANAL