Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation

被引:5
|
作者
Saez, S. [1 ,2 ]
de la Rosa, R. [1 ,3 ]
Recio, E. [1 ,3 ]
Garrido, T. M. [1 ,3 ]
Bruzon, M. S. [1 ,3 ]
机构
[1] Univ Cadiz, Cadiz, Spain
[2] Univ Cadiz, Escuela Super Ingn, Avda 10, Cadiz 11519, Spain
[3] Fac Ciencias, Campus Univ Rio San Pedro S-N, Cadiz 11510, Spain
关键词
Nonlinear partial differential equations; Lie symmetries; Conservation laws; TANH METHOD;
D O I
10.1007/s10910-020-01111-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper considers a generalized (2+1) dimensional nonlinear evolution equation depending on two nonzero arbitrary constants. We derive the Lie point symmetry generators and Lie symmetry groups. This symmetry analysis leads us the reductions equations, through one of which we obtain solutions. We also get the low-order conservation laws of the equation that have been obtained using the corresponding symmetries of the family. We will present a classification of conservation laws for this equation and we will apply Lie symmetry analysis to the equation in order to obtain exact solutions.
引用
收藏
页码:775 / 798
页数:24
相关论文
共 50 条
  • [1] Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation
    S. Sáez
    R. de la Rosa
    E. Recio
    T. M. Garrido
    M. S. Bruzón
    Journal of Mathematical Chemistry, 2020, 58 : 775 - 798
  • [2] Conservation laws and Lie symmetries a (2+1)-dimensional thin film equation
    Elena Recio
    Tamara M. Garrido
    Rafael de la Rosa
    María S. Bruzón
    Journal of Mathematical Chemistry, 2019, 57 : 1243 - 1251
  • [3] Conservation laws and Lie symmetries a (2+1)-dimensional thin film equation
    Recio, Elena
    Garrido, Tamara M.
    de la Rosa, Rafael
    Bruzon, Maria S.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (05) : 1243 - 1251
  • [4] Hamiltonian Structure, Symmetries and Conservation Laws for a Generalized (2+1)-Dimensional Double Dispersion Equation
    Recio, Elena
    Garrido, Tamara M.
    de la Rosa, Rafael
    Bruzon, Marfa S.
    SYMMETRY-BASEL, 2019, 11 (08):
  • [5] Lie symmetries, power series solutions and conservation laws of (2+1)-dimensional nonlinear fractional Fokas system
    Yu, Jicheng
    Feng, Yuqiang
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2025, 12 (01)
  • [6] LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR THE (2+1)-DIMENSIONAL MIKHALEV EQUATION
    Li, Xinyue
    Zhang, Yongli
    Zhang, Huiqun
    Zhao, Qiulan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [7] Lie symmetries, exact solutions and conservation laws of (2+1)-dimensional time fractional cubic Schrödinger equation
    Yu, Jicheng
    Feng, Yuqiang
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [8] A (2+1)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws
    Wang, Gangwei
    Kara, A. H.
    PHYSICS LETTERS A, 2019, 383 (08) : 728 - 731
  • [9] Lie symmetries, exact solutions and conservation laws of time fractional coupled (2+1)-dimensional nonlinear Schrödinger equations
    Yu, Jicheng
    Feng, Yuqiang
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024,
  • [10] Lie symmetries and conservation laws for a generalized Kuramoto-Sivashinsky equation
    Rosa, Maria
    Carlos Camacho, Jose
    Bruzon, Maria
    Luz Gandarias, Maria
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7295 - 7303