Drug-target interaction prediction: A Bayesian ranking approach

被引:66
|
作者
Peska, Ladislav [1 ,2 ]
Buza, Krisztian [2 ,3 ]
Koller, Julia [4 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Hungarian Acad Sci, Brain Imaging Ctr, Budapest, Hungary
[3] Rheinische Friedrich Wilhelms Univ Bonn, Bonn, Germany
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
Drug repositioning; Drug-target interactions; Machine learning; Bayesian personalized ranking; MATRIX FACTORIZATION TECHNIQUES; POSITIVE ALLOSTERIC MODULATOR; BIPARTITE LOCAL MODELS; PARKINSONS-DISEASE; RECOMMENDER SYSTEMS; OLD DRUGS; INHIBITORS; DISCOVERY; IDENTIFICATION; DEHYDROGENASE;
D O I
10.1016/j.cmpb.2017.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. Methods: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Results: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.0 0 0 and 0.404 for GPCR, IC, NR, and E datasets respectively. Conclusions: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/similar to peska/BRDTI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [31] Integrating bioassay data for improved prediction of drug-target interaction
    Dai, Weixing
    Li, Li
    Guo, Dianjing
    BIOPHYSICAL CHEMISTRY, 2020, 266
  • [32] Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information
    Zhang, Wen
    Chen, Yanlin
    Li, Dingfang
    MOLECULES, 2017, 22 (12):
  • [33] Recent Advances in the Machine Learning-based Drug-target Interaction Prediction
    Zhang, Wen
    Lin, Weiran
    Zhang, Ding
    Wang, Siman
    Shi, Jingwen
    Niu, Yanqing
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 194 - 202
  • [34] A comparison of embedding aggregation strategies in drug-target interaction prediction
    Iliadis, Dimitrios
    De Baets, Bernard
    Pahikkala, Tapio
    Waegeman, Willem
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [35] Drug-target interaction prediction by random walk on the heterogeneous network
    Chen, Xing
    Liu, Ming-Xi
    Yan, Gui-Ying
    MOLECULAR BIOSYSTEMS, 2012, 8 (07) : 1970 - 1978
  • [36] Drug-Target Interaction Prediction in Drug Repositioning Based on Deep Semi-Supervised Learning
    Bahi, Meriem
    Batouche, Mohamed
    COMPUTATIONAL INTELLIGENCE AND ITS APPLICATIONS, 2018, 522 : 302 - 313
  • [37] Deep-Learning-Based Drug-Target Interaction Prediction
    Wen, Ming
    Zhang, Zhimin
    Niu, Shaoyu
    Sha, Haozhi
    Yang, Ruihan
    Yun, Yonghuan
    Lu, Hongmei
    JOURNAL OF PROTEOME RESEARCH, 2017, 16 (04) : 1401 - 1409
  • [38] Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
    Azlim Khan, Azwaar Khan
    Ahamed Hassain Malim, Nurul Hashimah
    MOLECULES, 2023, 28 (04):
  • [39] Drug-Target Interaction Prediction Based on Gaussian Interaction Profile and Information Entropy
    Liu, Lina
    Yao, Shuang
    Ding, Zhaoyun
    Guo, Maozu
    Yu, Donghua
    Hu, Keli
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 388 - 399
  • [40] A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder
    Wang, Huiqing
    Wang, Jingjing
    Dong, Chunlin
    Lian, Yuanyuan
    Liu, Dan
    Yan, Zhiliang
    FRONTIERS IN PHARMACOLOGY, 2020, 10