Drug-target interaction prediction: A Bayesian ranking approach

被引:68
作者
Peska, Ladislav [1 ,2 ]
Buza, Krisztian [2 ,3 ]
Koller, Julia [4 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Hungarian Acad Sci, Brain Imaging Ctr, Budapest, Hungary
[3] Rheinische Friedrich Wilhelms Univ Bonn, Bonn, Germany
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
Drug repositioning; Drug-target interactions; Machine learning; Bayesian personalized ranking; MATRIX FACTORIZATION TECHNIQUES; POSITIVE ALLOSTERIC MODULATOR; BIPARTITE LOCAL MODELS; PARKINSONS-DISEASE; RECOMMENDER SYSTEMS; OLD DRUGS; INHIBITORS; DISCOVERY; IDENTIFICATION; DEHYDROGENASE;
D O I
10.1016/j.cmpb.2017.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. Methods: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Results: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.0 0 0 and 0.404 for GPCR, IC, NR, and E datasets respectively. Conclusions: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/similar to peska/BRDTI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 54 条
[1]   Group III and subtype 4 metabotropic glutamate receptor agonists: Discovery and pathophysiological applications in Parkinson's disease [J].
Amalric, M. ;
Lopez, S. ;
Goudet, C. ;
Fisone, G. ;
Battaglia, G. ;
Nicoletti, F. ;
Pin, J. -P. ;
Acher, F. C. .
NEUROPHARMACOLOGY, 2013, 66 :53-64
[2]  
[Anonymous], 2012, P 6 ACM C RECOMMENDE, DOI DOI 10.1145/2365952.2365972
[3]  
[Anonymous], 2015, Wiley Interdiscip Rev: Comput Mol Sci, DOI [10.1002/wcms.1225, DOI 10.1002/WCMS.1225]
[4]   Old drugs - new uses [J].
Aronson, J. K. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2007, 64 (05) :563-565
[5]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[6]  
Bolgar Bence., 2016, Proceedings of the Eighth International Conference on Probabilistic Graphical Models, P25
[7]   Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression [J].
Buza, Krisztian ;
Peska, Ladislav .
NEUROCOMPUTING, 2017, 260 :284-293
[8]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[9]   Structure-based maximal affinity model predicts small-molecule druggability [J].
Cheng, Alan C. ;
Coleman, Ryan G. ;
Smyth, Kathleen T. ;
Cao, Qing ;
Soulard, Patricia ;
Caffrey, Daniel R. ;
Salzberg, Anna C. ;
Huang, Enoch S. .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :71-75
[10]   New uses for old drugs [J].
Chong, Curtis R. ;
Sullivan, David J., Jr. .
NATURE, 2007, 448 (7154) :645-646