Self-Enhancing Gel Polymer Electrolyte by In Situ Construction for Enabling Safe Lithium Metal Battery

被引:168
作者
Chen, Dongli [1 ]
Zhu, Ming [2 ]
Kang, Peibin [1 ]
Zhu, Tao [1 ]
Yuan, Haocheng [1 ]
Lan, Jinle [1 ]
Yang, Xiaoping [1 ]
Sui, Gang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Shanghai Inst Space Power Sources, Shanghai 200245, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical performance; in situ polymerization; lithium metal batteries; poly-1; 3-dioxolane; polymer electrolyte; SOLID-ELECTROLYTE; POLYETHYLENE SEPARATORS; SILICA NANOPARTICLES; IONIC LIQUID; PERFORMANCE; INTERPHASE; DEPOSITION; TRANSPORT; ANODE;
D O I
10.1002/advs.202103663
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal battery (LMB) possessing a high theoretical capacity is a promising candidate of advanced energy storage devices. However, its safety and stability are challenged by lithium dendrites and the leakage of liquid electrolyte. Here, a self-enhancing gel polymer electrolyte (GPE) is created by in situ polymerizing 1,3-dioxolane (DOL) in the nanofibrous skeleton for enabling safe LMB. The nanofiber membrane possesses a better affinity with poly-DOL (PDOL) than commercial separator for constructing homogeneous GPE with enhanced ion conductivity. Furthermore, polydopamine is introduced on nanofiber membrane to form hydrogen bonding with PDOL and bis((trifluoromethyl)sulfonyl)imide anion, dramatically improving the mechanical strength, ionic conductivity, and transference number of GPE. Besides, molecular dynamic simulation is used to reveal the intrinsic factors of high ionic conductivity and reinforcing effect in the meantime. Consequently, the LiFePO4//Li batteries using self-enhancing GPE show extraordinary cyclic stability over 800 cycles under high current density of 2 C, with a capacity decay of 0.021% per cycle, effectively suppressing the growth of lithium dendrites. This ingenious strategy is expected to manufacture advanced performance and high safety LMBs and compatible with the current battery production.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Improved performance of silver doped titania/poly(vinylidine fluoride) nanofibers polymer electrolyte for lithium ion battery [J].
Bhute, Monali, V ;
Mitra, Sagar ;
Kondawar, Subhash B. .
MATERIALS LETTERS, 2019, 236 :225-228
[2]   Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries [J].
Chen, Jiahua ;
Yang, Zheng ;
Liu, Guohua ;
Li, Cheng ;
Yi, Jingsi ;
Fan, Ming ;
Tan, Huaping ;
Lu, Ziheng ;
Yang, Chunlei .
ENERGY STORAGE MATERIALS, 2020, 25 :305-312
[3]   Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes [J].
Chen, Tao ;
Wu, Haiping ;
Wan, Jing ;
Li, Mengxue ;
Zhang, Yucheng ;
Sun, Lin ;
Liu, Yuncong ;
Chen, Lili ;
Wen, Rui ;
Wang, Chao .
JOURNAL OF ENERGY CHEMISTRY, 2021, 62 :172-178
[4]   Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries [J].
Chen, Tao ;
Kong, Weihua ;
Zhang, Zewen ;
Wang, Lei ;
Hu, Yi ;
Zhu, Guoyin ;
Chen, Renpeng ;
Ma, Lianbo ;
Yan, Wen ;
Wang, Yanrong ;
Liu, Jie ;
Jin, Zhong .
NANO ENERGY, 2018, 54 :17-25
[5]   Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components [J].
Costa, C. M. ;
Lizundia, E. ;
Lanceros-Mendez, S. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2020, 79 (79)
[6]   An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries [J].
Didwal, Pravin N. ;
Singhbabu, Y. N. ;
Verma, Rakesh ;
Sung, Bong-Jun ;
Lee, Gwi-Hak ;
Lee, Jong-Sook ;
Chang, Duck Rye ;
Park, Chan-Jin .
ENERGY STORAGE MATERIALS, 2021, 37 :476-490
[7]   An Ultrarobust Composite Gel Electrolyte Stabilizing Ion Deposition for Long-Life Lithium Metal Batteries [J].
Ding, Chenfeng ;
Fu, Xuewei ;
Li, Hao ;
Yang, Jiayi ;
Lan, Jin-Le ;
Yu, Yunhua ;
Zhong, Wei-Hong ;
Yang, Xiaoping .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (43)
[8]   Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery [J].
Gao, Yue ;
Sang, Xiao ;
Chen, Yifan ;
Li, Yue ;
Liu, Bingbing ;
Sheng, Junlu ;
Feng, Yong ;
Li, Lei ;
Liu, Haiqing ;
Wang, Xiangwei ;
Kuang, Chunxia ;
Zhai, Yunyun .
JOURNAL OF MATERIALS SCIENCE, 2020, 55 (08) :3549-3560
[9]   Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions [J].
Gao, Yue ;
Yan, Zhifei ;
Gray, Jennifer L. ;
He, Xin ;
Wang, Daiwei ;
Chen, Tianhang ;
Huang, Qingquan ;
Li, Yuguang C. ;
Wang, Haiying ;
Kim, Seong H. ;
Mallouk, Thomas E. ;
Wang, Donghai .
NATURE MATERIALS, 2019, 18 (04) :384-+
[10]   Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries [J].
Guo, Qingpeng ;
Han, Yu ;
Wang, Hui ;
Sun, Weiwei ;
Jiang, Huize ;
Zhu, Yuhao ;
Zheng, Chunman ;
Xie, Kai .
ELECTROCHIMICA ACTA, 2018, 288 :101-107