Stabilization for the Wave Equation with Variable Coefficients and Balakrishnan-Taylor Damping

被引:16
作者
Ha, Tae Gab [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 04期
基金
新加坡国家研究基金会;
关键词
wave equation with variable coefficients; Balakrishnan-Taylor damping; asymptotic stability; ACOUSTIC BOUNDARY-CONDITIONS; ENERGY DECAY;
D O I
10.11650/tjm/7828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the wave equation with variable coefficients and Balakrishnan-Taylor damping and source terms. This work is devoted to prove, under suitable conditions on the initial data, the uniform decay rates of the energy without imposing any restrictive growth near zero assumption on the damping term.
引用
收藏
页码:807 / 817
页数:11
相关论文
共 50 条
  • [41] Uniform Stabilization for a Semilinear Wave Equation with Variable Coefficients and Nonlinear Boundary Conditions
    Kamel, El-Hadi
    Ainouz, Abdelhamid
    Khemmoudj, Ammar
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, : 981 - 1001
  • [42] Stabilization of Wave Equation Using Standard/Fractional Derivative in Boundary Damping
    Grabowski, Piotr
    ADVANCES IN THE THEORY AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2013, 257 : 101 - 121
  • [43] Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping
    Frota, Cicero Lopes
    Vicente, Andre
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [44] Uniform stabilization of wave equation with localized damping and acoustic boundary condition
    Vicente, A.
    Frota, C. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 639 - 660
  • [45] STABILIZATION OF WAVE EQUATIONS WITH VARIABLE COEFFICIENTS AND INTERNAL MEMORY
    Ning, Zhen-Hu
    Yang, Fengyan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [46] Stabilization of a coupled wave equation with one localized nonregular fractional Kelvin-Voigt damping with nonsmooth coefficients
    Zhang, Li
    Liu, Wenjun
    An, Yanning
    Cao, Xinxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9119 - 9146
  • [47] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [48] Stabilization of the Kirchhoff type wave equation with locally distributed damping
    Kang, Yong Han
    Lee, Mi Jin
    Jung, Il Hyo
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 719 - 722
  • [49] Exponential decay in a delayed wave equation with variable coefficients
    Al-Khulaifi, Waled
    Alotibi, Manal
    Tatar, Nasser-Eddine
    AIMS MATHEMATICS, 2024, 9 (10): : 27770 - 27783
  • [50] General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions
    Min Yoon
    Mi Jin Lee
    Jum-Ran Kang
    Boundary Value Problems, 2022