FINITE p-GROUPS G WITH p > 2 AND d(G)=2 HAVING EXACTLY ONE MAXIMAL SUBGROUP WHICH IS NEITHER ABELIAN NOR MINIMAL NONABELIAN

被引:2
作者
Janko, Zvonimir [1 ]
机构
[1] Univ Heidelberg, Math Inst, D-69120 Heidelberg, Germany
关键词
Minimal nonabelian p-groups; A(2)-groups; metacyclic p-groups; Frattini subgroups; Hall-Petrescu formula; generators and relations;
D O I
10.3336/gm.45.2.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give here a complete classification (up to isomorphism) of the title groups (Theorem 8 and Theorem 9). The corresponding problem for p = 2 was solved in [4].
引用
收藏
页码:441 / 452
页数:12
相关论文
共 4 条
[1]  
Berkovich Y., 2008, GROUPS PRIME POWER O
[2]  
BERKOVICH Y, 2011, GROUPS PRIM IN PRESS, V3
[3]  
BERKOVICH Y, 2008, GROUPS PRIME POWER O, V2
[4]  
Bozikov Z, 2010, GLAS MAT, V45, P63