Mean values of derivatives of L-functions in function fields: I

被引:10
作者
Andrade, Julio [1 ]
Rajagopal, Surajit [2 ]
机构
[1] Univ Exeter, Dept Math, N Pk Rd, Exeter EX4 4QF, Devon, England
[2] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Function fields; Hyperelliptic curves; Derivatives of L-functions; Moments of L-functions; Quadratic Dirichlet L-functions; Random matrix theory; RIEMANN ZETA-FUNCTION; L(1/2; CHI);
D O I
10.1016/j.jmaa.2016.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the first moment of the second derivative of quadratic Dirichlet L-functions over the rational function field. We establish an asymptotic formula when the cardinality of the finite field is fixed and the genus of the hyperelliptic curves associated to a family of Dirichlet L-functions over F-q(T) tends to infinity. As a more general result, we compute the full degree three polynomial in the asymptotic expansion of the first moment of the second derivative of this particular family of L-functions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:526 / 541
页数:16
相关论文
共 14 条
[1]   The mean value of L(1/2, χ) in the hyperelliptic ensemble [J].
Andrade, J. C. ;
Keating, J. P. .
JOURNAL OF NUMBER THEORY, 2012, 132 (12) :2793-2816
[2]   Rudnick and Soundararajan's theorem for function fields [J].
Andrade, Julio .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :311-327
[3]   A simple proof of the mean value of |K2(O)| in function fields [J].
Andrade, Julio .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (08) :677-682
[4]   Moments of the derivative of characteristic polynomials with an application to the Riemann zeta function [J].
Conrey, J. B. ;
Rubinstein, M. O. ;
Snaith, N. C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (03) :611-629
[5]   THE 4TH MOMENT OF DERIVATIVES OF THE RIEMANN ZETA-FUNCTION [J].
CONREY, JB .
QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (153) :21-36
[6]   Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field [J].
Faifman, Dmitry ;
Rudnick, Zeev .
COMPOSITIO MATHEMATICA, 2010, 146 (01) :81-101
[7]  
Florea A., 2015, ARXIV150503094
[8]   MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION AND ITS DERIVATIVES [J].
GONEK, SM .
INVENTIONES MATHEMATICAE, 1984, 75 (01) :123-141
[9]  
Hardy GH, 1918, ACTA MATH-DJURSHOLM, V41, P119
[10]  
HOFFSTEIN J, 1992, J REINE ANGEW MATH, V426, P117