Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions

被引:35
作者
Chong, Su Kong [1 ]
Han, Kyu Bum [2 ]
Nagaoka, Akira [2 ,3 ]
Tsuchikawa, Ryuichi [1 ]
Liu, Renlong [4 ,5 ]
Liu, Haoliang [1 ]
Vardeny, Zeev Valy [1 ]
Pesin, Dmytro A. [1 ]
Lee, Changgu [4 ,5 ]
Sparks, Taylor D. [2 ]
Deshpande, Vikram V. [1 ]
机构
[1] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[3] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan
[4] Sungkyunkwan Univ, Dept Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi, South Korea
[5] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol, 2066 Seobu Ro, Suwon 16419, Gyeonggi, South Korea
关键词
Topological insulators; ferromagnetic insulators; van der Waals heterostructures; quantum Hall effect; SURFACE-STATE; GRAPHENE; CONE;
D O I
10.1021/acs.nanolett.8b04291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g. the quantum Hall (QH) effect of massless Dirac fermions in topological surface states (TSS). However, to realize more advanced devices and phenomena, there is a need for a platform to tune the TSS or modify them e.g. gap them by proximity with magnetic insulators, in a clean manner. Here we introduce van der Waals (vdW) heterostructures in the form of topological insulator/insulator/graphite to effectively control chemical potential of the TSS. Two types of gate dielectrics, normal insulator hexagonal boron nitride (hBN) and ferromagnetic insulator Cr2Ge2Te6 (CGT) are utilized to tune charge density of TSS in the quaternary TI BiSbTeSe2. hBN/graphite gating in the QH regime shows improved quantization of TSS by suppression of magnetoconductivity of massless Dirac fermions. CGT/graphite gating of massive Dirac fermions in the QH regime yields half-quantized Hall conductance steps and a measure of the Dirac gap. Our work shows the promise of the vdW platform in creating advanced high-quality TI-based devices.
引用
收藏
页码:8047 / 8053
页数:7
相关论文
共 50 条
[41]   The Emerging Nano-Opto-Electromechanical Systems Based on van der Waals Heterostructures [J].
Li, Xiaoxi ;
Sha, Xuanzhe ;
Zhang, Tongyao ;
Wang, Hanwen ;
Han, Zheng Vitto .
ADVANCED FUNCTIONAL MATERIALS, 2025,
[42]   Electrical Control of Spin-Injection Using Mixed Dimensional van der Waals Heterostructures [J].
Tiessen, John Eric ;
Shi, Junxia .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2020, 19 :736-743
[43]   Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture [J].
Zhang, Libo ;
Dong, Zhuo ;
Wang, Lin ;
Hu, Yibin ;
Guo, Cheng ;
Guo, Lei ;
Chen, Yulu ;
Han, Li ;
Zhang, Kaixuan ;
Tian, Shijian ;
Yao, Chenyu ;
Chen, Zhiqingzi ;
Cai, Miao ;
Jiang, Mengjie ;
Xing, Huaizhong ;
Yu, Xianbin ;
Chen, Xiaoshuang ;
Zhang, Kai ;
Lu, Wei .
ADVANCED SCIENCE, 2021, 8 (23)
[44]   Recent Progress of Photodetectors based on MX2/Graphene van der Waals heterostructures [J].
Yang, Hang ;
Qin, Shiqiao ;
Fang, Jinyue ;
Peng, Gang ;
Zhang, Xueao .
OPTICAL MEASUREMENT TECHNOLOGY AND INSTRUMENTATION, 2016, 10155
[45]   Band alignment in carbon-based one-dimensional van der Waals heterostructures [J].
Tan, Xingyi ;
Ding, Linjie ;
He, Yelu ;
Jiang, Youchang ;
Ren, Dahua .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 134
[46]   Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures [J].
Wang, Jingang ;
Mu, Xijiao ;
Sun, Mengtao ;
Mu, Tingjie .
APPLIED MATERIALS TODAY, 2019, 16 :1-20
[47]   TiS3 sheet based van der Waals heterostructures with a tunable Schottky barrier [J].
Liu, Jie ;
Guo, Yaguang ;
Wang, Fancy Qian ;
Wang, Qian .
NANOSCALE, 2018, 10 (02) :807-815
[48]   Nanotube-Based 1D Heterostructures Coupled by van der Waals Forces [J].
Cambre, Sofie ;
Liu, Ming ;
Levshov, Dmitry ;
Otsuka, Keigo ;
Maruyama, Shigeo ;
Xiang, Rong .
SMALL, 2021, 17 (38)
[49]   Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides [J].
Sergeyev, Daulet ;
Shunkeyev, Kuanyshbek .
CRYSTALS, 2025, 15 (07)
[50]   Direct Observation of Inter layer Hybridization and Dirac Relativistic Carriers in Graphene/MoS2 van der Waals Heterostructures [J].
Diaz, Horacio Coy ;
Avila, Jose ;
Chen, Chaoyu ;
Addou, Rafik ;
Asensio, Maria C. ;
Batzill, Matthias .
NANO LETTERS, 2015, 15 (02) :1135-1140