Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions

被引:34
作者
Chong, Su Kong [1 ]
Han, Kyu Bum [2 ]
Nagaoka, Akira [2 ,3 ]
Tsuchikawa, Ryuichi [1 ]
Liu, Renlong [4 ,5 ]
Liu, Haoliang [1 ]
Vardeny, Zeev Valy [1 ]
Pesin, Dmytro A. [1 ]
Lee, Changgu [4 ,5 ]
Sparks, Taylor D. [2 ]
Deshpande, Vikram V. [1 ]
机构
[1] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[3] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan
[4] Sungkyunkwan Univ, Dept Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi, South Korea
[5] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol, 2066 Seobu Ro, Suwon 16419, Gyeonggi, South Korea
关键词
Topological insulators; ferromagnetic insulators; van der Waals heterostructures; quantum Hall effect; SURFACE-STATE; GRAPHENE; CONE;
D O I
10.1021/acs.nanolett.8b04291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g. the quantum Hall (QH) effect of massless Dirac fermions in topological surface states (TSS). However, to realize more advanced devices and phenomena, there is a need for a platform to tune the TSS or modify them e.g. gap them by proximity with magnetic insulators, in a clean manner. Here we introduce van der Waals (vdW) heterostructures in the form of topological insulator/insulator/graphite to effectively control chemical potential of the TSS. Two types of gate dielectrics, normal insulator hexagonal boron nitride (hBN) and ferromagnetic insulator Cr2Ge2Te6 (CGT) are utilized to tune charge density of TSS in the quaternary TI BiSbTeSe2. hBN/graphite gating in the QH regime shows improved quantization of TSS by suppression of magnetoconductivity of massless Dirac fermions. CGT/graphite gating of massive Dirac fermions in the QH regime yields half-quantized Hall conductance steps and a measure of the Dirac gap. Our work shows the promise of the vdW platform in creating advanced high-quality TI-based devices.
引用
收藏
页码:8047 / 8053
页数:7
相关论文
共 50 条
[21]   Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures [J].
Shin, Yong Seon ;
Lee, Kiyoung ;
Kim, Young Rae ;
Lee, Hyangsook ;
Lee, I. Min ;
Kang, Won Tae ;
Lee, Boo Heung ;
Kim, Kunnyun ;
Heo, Jinseong ;
Park, Seongjun ;
Lee, Young Hee ;
Yu, Woo Jong .
ADVANCED MATERIALS, 2018, 30 (09)
[22]   Advancements in Van der Waals Heterostructures Based on 2D Semiconductor Materials [J].
Zulfiqar, Muhammad Wajid ;
Nisar, Sobia ;
Kim, Deok-kee ;
Dastgeer, Ghulam .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (01) :41-63
[23]   High-Speed Optoelectronic Nonvolatile Memory Based on van der Waals Heterostructures [J].
Wang, Wenxiang ;
Jin, Jiyou ;
Wang, Yanrong ;
Wei, Zheng ;
Xu, Yushi ;
Peng, Zhisheng ;
Liu, Hui ;
Wang, Yu ;
You, Jiawang ;
Impundu, Julienne ;
Zheng, Qiang ;
Li, Yong Jun ;
Sun, Lianfeng .
SMALL, 2023, 19 (47)
[24]   Van Der Waals Heterostructures Based on Atomically-Thin Superconductors [J].
Boix-Constant, Carla ;
Manas-Valero, Samuel ;
Cordoba, Rosa ;
Coronado, Eugenio .
ADVANCED ELECTRONIC MATERIALS, 2021, 7 (07)
[25]   Multibit tribotronic nonvolatile memory based on van der Waals heterostructures [J].
Jia, Mengmeng ;
Yu, Jinran ;
Liu, Yudong ;
Guo, Pengwen ;
Lei, Ying ;
Wang, Wei ;
Yu, Aifang ;
Zhu, Yaxing ;
Sun, Qijun ;
Zhai, Junyi ;
Wang, Zhong Lin .
NANO ENERGY, 2021, 83
[26]   Enhanced Free-Electron-Photon Interactions at the Topological Transition in van der Waals Heterostructures [J].
Yu, Renwen ;
Fan, Shanhui .
NANO LETTERS, 2024, 25 (01) :529-536
[27]   Stacking-dependent electronic properties of aluminene based multilayer van der Waals heterostructures [J].
Pandey, Dhanshree ;
Kumar, Ashok ;
Chakrabarti, Aparna ;
Pandey, Ravindra .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 185
[28]   Light-Rewritable Logic Devices Based on Van der Waals Heterostructures [J].
Li, Songyu ;
Chen, Xiaoqing ;
Zhang, Zeyu ;
Li, Xuhong ;
Deng, Wenjie ;
Liu, Famin ;
Lu, Yue ;
Zhang, Yongzhe .
ADVANCED ELECTRONIC MATERIALS, 2022, 8 (01)
[29]   Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides [J].
Qi, Haimei ;
Wang, Lina ;
Sun, Jie ;
Long, Yi ;
Hu, Peng ;
Liu, Fucai ;
He, Xuexia .
CRYSTALS, 2018, 8 (01)
[30]   Tunneling devices based on graphene/black phosphorus van der Waals heterostructures [J].
Jiang, Xiao-Qiang ;
Li, Xiao-Kuan ;
Chen, Shao-Nan ;
Su, Bao-Wang ;
Huang, Kai-Xuan ;
Liu, Zhi-Bo ;
Tian, Jian-Guo .
MATERIALS RESEARCH EXPRESS, 2020, 7 (01)