Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation

被引:25
作者
Bao, Shouchun [1 ]
Tu, Mengyao [1 ]
Huang, Haowei [1 ]
Wang, Can [1 ]
Chen, Yiyu [1 ]
Sun, Baofen [2 ]
Xu, Binghui [1 ]
机构
[1] Qingdao Univ, Coll Mat Sci & Engn, Inst Mat Energy & Environm, State Key Lab Biofibers & Ecotext, Qingdao 266071, Shandong, Peoples R China
[2] Shandong Vocat Coll Sci & Technol, Weifang 261053, Peoples R China
关键词
Hematite; Magnetite; Carbon nanotube; Lithium-ion batteries; Fenton-like oxidation; 3-DIMENSIONAL GRAPHENE FOAM; ANODE MATERIAL; ENERGY-CONVERSION; NANOSTRUCTURES; NANOCOMPOSITE; MICROSPHERES; CHALLENGES; BATTERIES; CAPACITY; OXYGEN;
D O I
10.1016/j.jcis.2021.05.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, heterogeneous hematite (Fe2O3) and magnetite (Fe3O4) nanoparticles are jointly engineered on the external surface of multi-walled carbon nanotubes (CNTs) to construct a composite material (Fe2O3@Fe3O4/CNT). A simple one-step redox reaction is triggered in a hydrothermal reaction system containing functionalized CNT (FCNT) aqueous suspension and iron foils. Both Fe2O3 and Fe3O4 nanoparticles with controlled size are generated and well dispersed in the interconnected CNT framework. Controlled samples of Fe2O3@Fe3O4 and Fe3O4/CNT have also been prepared and used to investigate the synthetic mechanism and evaluate the lithium-ion storage performances. As an anodic active material for lithium-ion batteries, the Fe2O3@Fe3O4/CNT composite delivered a high reversible capacity of about 924 mAh.g(-1) for 200 continual charge/discharge cycles under a high current rate of 1000 mA.g(-1). As a catalyst in a Fenton-like reaction for degrading methyl orange (MO) contaminant in waterbody, the Fe2O3@Fe3O4/CNT composite exhibited an attractive decomposition efficiency (99.5% decomposition within 60 min) and good stability. The beneficial factors contributing to the inspiring performances are discussed. The effective and scalable material design and synthesis method can be regarded to have good potential in other fields. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 51 条
[1]  
An KH, 2001, J KOREAN PHYS SOC, V39, pS511
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[4]   Engineering zinc ferrite nanoparticles in a hierarchical graphene and carbon nanotube framework for improved lithium-ion storage [J].
Bao, Shouchun ;
Tan, Qingke ;
Kong, Xiangli ;
Wang, Can ;
Chen, Yiyu ;
Wang, Chao ;
Xu, Binghui .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 588 :346-356
[5]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[6]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[7]  
2-B
[8]   Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol [J].
Duan, Zhihui ;
Zhang, Wanhui ;
Lu, Muwen ;
Shao, Zhiwei ;
Huang, Weilin ;
Li, Jing ;
Li, Yanan ;
Mo, Juncheng ;
Li, Yongtao ;
Chen, Chengyu .
CARBON, 2020, 167 :351-363
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)