On the solvability of a boundary value problem for a fourth-order ordinary differential equation

被引:39
作者
Grossinho, MD
Sanchez, L
Tersian, SA
机构
[1] Univ Rousse, Ctr Appl Math & Informat, Rousse 7017, Bulgaria
[2] Univ Tecn Lisboa, Dept Matemat, ISEG, P-1200781 Lisbon, Portugal
[3] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
基金
新加坡国家研究基金会;
关键词
fourth-order equations; variational methods;
D O I
10.1016/j.aml.2004.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and multiplicity of nontrivial periodic solutions for a semilinear fourth-order ordinary differential equation arising in the study of spatial patterns for bistable systems. Variational tools such as the Brezis-Nirenberg theorem and Clark theorem are used in the proofs of the main results. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 11 条
[1]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[2]   Existence and numerical approximations of periodic solutions of semilinear fourth-order differential equations [J].
Chaparova, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (01) :121-136
[3]  
Chaparova J. V., 2003, ADV DIFFERENTIAL EQU, V8, P1237
[4]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[5]  
do Rosario Grossinho M., 2001, INTRO MINIMAX THEORE
[6]  
Peletier L.A., 2001, Spatial Patterns. Higher Order Models in Physics and Mechanics
[7]   Large time behaviour of solutions of the Swift-Hohenberg equation [J].
Peletier, LA ;
Rottschäfer, V .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) :225-230
[8]  
PELETIER LA, 1995, DIFF EQUAT+, V31, P301
[9]  
PELETIER LA, IN PRESS PHYS D
[10]   Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations [J].
Tersian, S ;
Chaparova, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :490-506