Shape-Dependent Light Scattering Properties of Subwavelength Silicon Nanoblocks

被引:78
作者
Ee, Ho-Seok [1 ]
Kang, Ju-Hyung [2 ]
Brongersma, Mark L. [2 ]
Seo, Min-Kyo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys & Inst NanoCentury, Taejon 305701, South Korea
[2] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
基金
新加坡国家研究基金会;
关键词
Silicon nanoblock; leaky-mode resonance; resonant scattering; scattering cross section; structural color; ABSORPTION; NANOANTENNAS; DESIGN;
D O I
10.1021/nl504442v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit.-Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01 mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross-section to the physical cross section of the nanoblock, Of,similar to 9.95, approaching the theoretical lOwest-order single-channel scattering limit, is achievable. Control over the subwavelength-scaleleaky-mode resonance allows Si nanoblOcks to generate vivid structural color, manipulate forward and backward scattering, and as excellent photonic artificial atoms for metasurfaces.
引用
收藏
页码:1759 / 1765
页数:7
相关论文
共 47 条
[1]   Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays [J].
Abb, Martina ;
Wang, Yudong ;
Papasimakis, Nikitas ;
de Groot, C. H. ;
Muskens, Otto L. .
NANO LETTERS, 2014, 14 (01) :346-352
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Spectral properties of plasmonic resonator antennas [J].
Barnard, Edward S. ;
White, Justin S. ;
Chandran, Anu ;
Brongersma, Mark L. .
OPTICS EXPRESS, 2008, 16 (21) :16529-16537
[5]   Model of Fabry-Perot-type electromagnetic modes of a cylindrical nanowire [J].
Bordo, V. G. .
PHYSICAL REVIEW B, 2010, 81 (03)
[6]   Near-field second-harmonic generation induced by local field enhancement [J].
Bouhelier, A ;
Beversluis, M ;
Hartschuh, A ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4
[7]   Optical Properties of Individual Silicon Nanowires for Photonic Devices [J].
Broenstrup, Gerald ;
Jahr, Norbert ;
Leiterer, Christian ;
Csaki, Andrea ;
Fritzsche, Wolfgang ;
Christiansen, Silke .
ACS NANO, 2010, 4 (12) :7113-7122
[8]   Tuning the Color of Silicon Nanostructures [J].
Cao, Linyou ;
Fan, Pengyu ;
Barnard, Edward S. ;
Brown, Ana M. ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (07) :2649-2654
[9]   Resonant Germanium Nanoantenna Photodetectors [J].
Cao, Linyou ;
Park, Joon-Shik ;
Fan, Pengyu ;
Clemens, Bruce ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (04) :1229-1233
[10]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]