MACHINING BEHAVIOR AND MATERIAL PROPERTIES IN ADDITIVE MANUFACTURING TI-6AL-4V PARTS

被引:0
作者
Gong, Xi [1 ]
Manogharan, Guha [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
来源
PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A | 2020年
关键词
Additive Manufacturing; Ti-6Al-4V; Microstructure; Specific Cutting Energy; BEAM MELTING EBM; MECHANICAL-PROPERTIES; TITANIUM-ALLOY; MICROSTRUCTURE; MACHINABILITY; PARAMETERS; TEXTURE; ORIENTATION; GEOMETRY; DRY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although Additive Manufacturing (AM) has unique advantages in processing complex part designs using superalloys, metal AM parts currently do not meet the part tolerance and surface finish requirements for most mechanical applications. Hence, there is a growing need for integrated metal hybrid manufacturing through both "in-envelope" and "sequential" additive-subtractive manufacturing. Since AM parts are inherently different from traditionally manufactured parts (e.g., anisotropy, residual stress), there is a critical gap in the literature to correlate as-built AM material properties, material characterization, machining parameters with resulting machining behavior such as cutting force and specific cutting energy. This study reports on the machining behavior of Electron Beam Melting (EBM) and Laser Powder Bed Fusion (L-PBF) processed Ti-6Al-4V parts with highly textured microstructure due to build orientation, and heat treatment across different machining conditions. It was found that specific cutting energy of AM parts changes up to 21.6% based on AM processing, cessed parts, build orientation, and heat treatment conditions. The finding from this study can be used to predict machining behavior based on material characterization. In the future, this study will lead to creating a correlation model on AM parts microstructure and correlated machining behavior, surface finish, and tool wear behavior.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: The effect of build orientation [J].
Agius, Dylan ;
Kourousis, Kyriakos I. ;
Wallbrink, Chris ;
Song, Tingting .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 701 :85-100
[2]   The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V [J].
Al-Bermani, S. S. ;
Blackmore, M. L. ;
Zhang, W. ;
Todd, I. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (13) :3422-3434
[3]   Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J].
Antonysamy, A. A. ;
Meyer, J. ;
Prangnell, P. B. .
MATERIALS CHARACTERIZATION, 2013, 84 :153-168
[4]   Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties [J].
Azarniya, Abolfazl ;
Colera, Xabier Garmendia ;
Mirzaali, Mohammad J. ;
Sovizi, Saeed ;
Bartolomeu, Flavio ;
Weglowski, Marek St ;
Wits, Wessel W. ;
Yap, Chor Yen ;
Ahn, Joseph ;
Miranda, Georgina ;
Silva, Filipe Samuel ;
Hosseini, Hamid Reza Madaah ;
Ramakrishna, Seeram ;
Zadpoor, Amir A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 804 :163-191
[5]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[6]   Micro-milling machinability of DED additive titanium Ti-6Al-4V [J].
Bonaiti, Giuseppe ;
Parenti, Paolo ;
Annoni, Massimiliano ;
Kapoor, Shiv .
45TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 45), 2017, 10 :497-509
[7]   Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6A14V produced by Additive Manufacturing [J].
Bordin, A. ;
Sartori, S. ;
Bruschi, S. ;
Ghiotti, A. .
JOURNAL OF CLEANER PRODUCTION, 2017, 142 :4142-4151
[8]   On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation [J].
Cheng, Bo ;
Price, Steven ;
Lydon, James ;
Cooper, Kenneth ;
Chou, Kevin .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (06)
[9]   Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing [J].
Ding, R ;
Guo, Z ;
Wilson, A .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 327 (02) :233-245
[10]  
Gibson I, 2010, ADDITIVE MANUFACTURING TECHNOLOGIES: RAPID PROTOTYPING TO DIRECT DIGITAL MANUFACTURING, P1, DOI 10.1007/978-1-4419-1120-9