Improved analysis framework for axion dark matter searches

被引:10
|
作者
Palken, D. A. [1 ,2 ,3 ]
Brubaker, B. M. [1 ,2 ,3 ,4 ]
Malnou, M. [1 ,2 ,3 ]
Al Kenany, S. [5 ]
Backes, K. M. [4 ]
Cahn, S. B. [4 ]
Gurevich, Y., V [4 ]
Lamoreaux, S. K. [4 ]
Lewis, S. M. [5 ]
Maruyama, R. H. [4 ]
Rapidis, N. M. [5 ]
Root, J. R. [5 ]
Simanovskaia, M. [5 ]
Shokair, T. M. [5 ]
Singh, Sukhman [4 ]
Speller, D. H. [4 ]
Urdinaran, I [5 ]
van Bibber, K. [5 ]
Zhong, L. [4 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[5] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW D | 2020年 / 101卷 / 12期
基金
美国国家科学基金会;
关键词
CP CONSERVATION; COSMIC AXIONS; CONSTRAINTS; DENSITY; LIMITS;
D O I
10.1103/PhysRevD.101.123011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol [B. M. Brubaker, L. Thong, S. K. Lamorcaux, K. W. Lehnert, and K. A. van Bibber, Phys. Rev. D 96, 123008 (2017)] to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling g(gamma) while also identifying the most promising regions of parameter space within the 23.15-24.0 mu eV mass range. A comparison with the standard threshold analysis suggests a 36% improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Analysis of single-photon and linear amplifier detectors for microwave cavity dark matter axion searches
    Lamoreaux, S. K.
    van Bibber, K. A.
    Lehnert, K. W.
    Carosi, G.
    PHYSICAL REVIEW D, 2013, 88 (03):
  • [22] Dark Matter and The Axion
    Kim, Jihn E.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (06) : 3551 - 3558
  • [23] Axion dark matter
    Sikivie, Pierre
    NUCLEAR PHYSICS B, 2024, 1003
  • [24] Axion dark matter
    Massó, E
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 225 - 230
  • [25] Axion dark matter echo: A detailed analysis
    Arza, Ariel
    Todarello, Elisa
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [26] Dark matter searches
    Baudis, Laura
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (8-9): : 1925 - 1936
  • [27] Dark matter searches
    Pretzl, K.
    SPACE SCIENCE REVIEWS, 2007, 130 (1-4) : 63 - 72
  • [28] Stochastic axion dark matter in axion landscape
    Nakagawa, Shota
    Takahashi, Fuminobu
    Yin, Wen
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (05):
  • [29] Axion quasiparticles for axion dark matter detection
    Schuette-Engel, Jan
    Marsh, David J. E.
    Millar, Alexander J.
    Sekine, Akihiko
    Chadha-Day, Francesca
    Hoof, Sebastian
    Ali, Mazhar N.
    Fong, Kin Chung
    Hardy, Edward
    Smejkal, Libor
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [30] Dark matter searches
    Baudis, Laura
    ANNALEN DER PHYSIK, 2016, 528 (1-2) : 74 - 83