Synchronization in networks of slightly nonidentical elements

被引:15
作者
Hramov, Alexander E. [1 ]
Khramova, Anastasiya E. [1 ]
Koronovskii, Alexey A. [1 ]
Boccaletti, Stefano [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Fac Nonlinear Processes, Saratov 410012, Russia
[2] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Floreence, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2008年 / 18卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
networks; chaotic synchronization; master stability function; noise;
D O I
10.1142/S0218127408020707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study synchronization processes in networks of slightly nonidentical chaotic systems, for which a complete invariant synchronization manifold does not rigorously exist. We show and quantify how a slightly dispersed distribution in parameters can be properly modeled by a noise term affecting the stability of the synchronous invariant solution emerging for identical systems when the parameter is set at the mean value of the original distribution.
引用
收藏
页码:845 / 850
页数:6
相关论文
共 16 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Influence of noise near blowout bifurcation [J].
Ashwin, P ;
Stone, E .
PHYSICAL REVIEW E, 1997, 56 (02) :1635-1641
[3]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[4]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[5]   Synchronization is enhanced in weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Hentschel, HGE ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[6]  
GARCIAOJALVO J, 1999, NOISE SPATIALLY EXTE
[7]   Synchronization in complex networks with age ordering [J].
Hwang, DU ;
Chavez, M ;
Amann, A ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (13)
[8]   Scaling laws for symmetry breaking by blowout bifurcation in chaotic systems [J].
Lai, YC .
PHYSICAL REVIEW E, 1997, 56 (02) :1407-1413
[9]   Network synchronization, diffusion, and the paradox of heterogeneity [J].
Motter, AE ;
Zhou, CS ;
Kurths, J .
PHYSICAL REVIEW E, 2005, 71 (01)
[10]   Enhancing complex-network synchronization [J].
Motter, AE ;
Zhou, CS ;
Kurths, J .
EUROPHYSICS LETTERS, 2005, 69 (03) :334-340