Ruled Weingarten surfaces in Minkowski 3-space

被引:78
作者
Dillen, F
Kühnel, W
机构
[1] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
[2] Univ Stuttgart, Inst Math B, D-70550 Stuttgart, Germany
关键词
D O I
10.1007/s002290050142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize all ruled surfaces in Minkowski 3-space with a relation between the Gauss and mean curvature (Weingarten surfaces). It turns out that, except if the rulings are in a null direction, these are given by Lorentzian screw motions of straight lines. However, if the rulings are always in a null direction, then every ruled surface is Weingarten.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 19 条
[1]  
Barut A., 1980, THEORY GROUP REPRESE
[2]  
Calabi E., 1970, Proc Symp Pure Appl Math, V15, P223, DOI DOI 10.1090/PSPUM/015/0264210
[3]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[4]  
Dillen F., 1995, RESULTS MATH, V27, P250, DOI [10.1007/BF03322830, DOI 10.1007/BF03322830]
[5]  
Dillen F., 1996, GEOMETRY TOPOLOGY SU, VVIII, P145
[6]   HELICOIDAL SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DOCARMO, MP ;
DAJCZER, M .
TOHOKU MATHEMATICAL JOURNAL, 1982, 34 (03) :425-435
[7]   SURFACES OF REVOLUTION WITH CONSTANT MEAN-CURVATURE IN LORENTZ-MINKOWSKI SPACE [J].
HANO, J ;
NOMIZU, K .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) :427-437
[8]   ON ISOMETRIC IMMERSIONS OF THE HYPERBOLIC PLANE INTO THE LORENTZ-MINKOWSKI SPACE AND THE MONGE-AMPERE EQUATION OF A CERTAIN TYPE [J].
HANO, J ;
NOMIZU, K .
MATHEMATISCHE ANNALEN, 1983, 262 (02) :245-253
[9]  
KOBAYASHI O, 1983, TOKYO J MATH, V6, P297, DOI DOI 10.3836/TJM/1270213872
[10]  
KOCH R, 1993, J GEOM, V4, P77