Specifying Imperative ML-Like Programs Using Dynamic Logic

被引:0
作者
Maingaud, Severine [1 ,2 ]
Balat, Vincent [1 ,2 ]
Bubel, Richard [3 ]
Haehnle, Reiner [3 ]
Miquel, Alexandre [4 ]
机构
[1] CNRS, Lab Preuves Programmes & Syst, F-75700 Paris, France
[2] Univ Paris Diderot, Paris, France
[3] Chalmers Univ, Dept Comp Sci & Engn, Gothenburg, Sweden
[4] Univ Lyon, UCBL, CNRS, INRIA,LIP,UMR 5668,ENS Lyon, Lyon, France
来源
FORMAL VERIFICATION OF OBJECT-ORIENTED SOFTWARE | 2011年 / 6528卷
关键词
ML; dynamic logic; program specification; program verification; KeY; AF2;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a logical system suited for specification and verification of imperative ML programs. The specification language combines dynamic logic (DL), explicit state updates and second-order functional arithmetic. Its proof system is based on a Gentzen-style sequent calculus (adapted to modal logic) with facilities for symbolic evaluation. We illustrate the system with some example, and give a full Kripke-style semantics in order to prove its correctness.
引用
收藏
页码:122 / +
页数:2
相关论文
共 11 条
[1]  
[Anonymous], LNCS LNAI
[2]  
Balser M, 2000, LECT NOTES COMPUT SC, V1783, P363
[3]  
Baro S, 2004, ANN NY ACAD SCI, V3085, P51
[4]  
Chlipala A., 2009, ICFP 2009
[5]  
Filliatre JC, 2003, 1366 LRI U PAR SUD
[6]  
Harel D., 2000, Foundations of computing
[7]   AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING [J].
HOARE, CAR .
COMMUNICATIONS OF THE ACM, 1969, 12 (10) :576-&
[8]  
KANIG J, 2009, ACM SIGPLAN WORKSH M
[9]  
Krivine J.L., 1993, LAMBDA CALCULUS TYPE
[10]  
Régis-Gianas Y, 2008, LECT NOTES COMPUT SC, V5133, P305