Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation

被引:21
作者
Mei, Jilin [1 ]
Zhao, Huijing [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2020年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
3D LiDAR data; semantic segmentation; human domain knowledge;
D O I
10.1109/TIV.2019.2955851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, ourmethod can achieve similar performance with fewer manual annotations.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 29 条
[21]   Autonomous driving in urban environments: Boss and the Urban Challenge [J].
Urmson, Chris ;
Anhalt, Joshua ;
Bagnell, Drew ;
Baker, Christopher ;
Bittner, Robert ;
Clark, M. N. ;
Dolan, John ;
Duggins, Dave ;
Galatali, Tugrul ;
Geyer, Chris ;
Gittleman, Michele ;
Harbaugh, Sam ;
Hebert, Martial ;
Howard, Thomas M. ;
Kolski, Sascha ;
Kelly, Alonzo ;
Likhachev, Maxim ;
McNaughton, Matt ;
Miller, Nick ;
Peterson, Kevin ;
Pilnick, Brian ;
Rajkumar, Raj ;
Rybski, Paul ;
Salesky, Bryan ;
Seo, Young-Woo ;
Singh, Sanjiv ;
Snider, Jarrod ;
Stentz, Anthony ;
Whittaker, William Red ;
Wolkowicki, Ziv ;
Ziglar, Jason ;
Bae, Hong ;
Brown, Thomas ;
Demitrish, Daniel ;
Litkouhi, Bakhtiar ;
Nickolaou, Jim ;
Sadekar, Varsha ;
Zhang, Wende ;
Struble, Joshua ;
Taylor, Michael ;
Darms, Michael ;
Ferguson, Dave .
JOURNAL OF FIELD ROBOTICS, 2008, 25 (08) :425-466
[22]   An Efficient Scene Semantic Labeling Approach for 3D Point Cloud [J].
Wang, Tianyi ;
Li, Jian ;
An, Xiangjing .
2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, :2115-2120
[23]  
Weinmann M., 2014, ISPRS ANN PHOTOGRAMM, VII-3, P181, DOI [10.5194/isprsannals-II-3-181-2014, DOI 10.5194/ISPRSANNALS-II-3-181-2014]
[24]  
Wu BC, 2018, IEEE INT CONF ROBOT, P1887
[25]  
Wulfmeier M., 2016, ARXIV161204318
[26]  
Xu J, 2015, PROC CVPR IEEE, P3781, DOI 10.1109/CVPR.2015.7299002
[27]   A discriminative learning framework with pairwise constraints for video object classification [J].
Yan, R ;
Zhang, J ;
Yang, J ;
Hauptmann, AG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) :578-593
[28]  
Yosinski J, 2014, ADV NEUR IN, V27
[29]   Scene Understanding in a Large Dynamic Environment through a Laser-based Sensing [J].
Zhao, Huijing ;
Liu, Yiming ;
Zhu, Xiaolong ;
Zhao, Yipu ;
Zha, Hongbin .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :127-133