Mortality prediction in intensive care units including premorbid functional status improved performance and internal validity

被引:7
作者
Moser, Andre [1 ]
Reinikainen, Matti [2 ,3 ]
Jakob, Stephan M. [4 ]
Selander, Tuomas [5 ]
Pettila, Ville [6 ,7 ]
Kiiski, Olli [8 ]
Varpula, Tero [6 ,7 ]
Raj, Rahul [7 ,9 ]
Takala, Jukka [4 ]
机构
[1] Univ Bern, CTU Bern, Mittelstr 43, CH-3012 Bern, Switzerland
[2] Kuopio Univ Hosp, Dept Anaesthesiol & Intens Care, Kuopio, Finland
[3] Kuopio Univ Hosp, Univ Eastern Finland, Kuopio, Finland
[4] Univ Bern, Bern Univ Hosp, Dept Intens Care Med, Bern, Switzerland
[5] Kuopio Univ Hosp, Sci Serv Ctr, Kuopio, Finland
[6] Univ Helsinki, Div Intens Care, Helsinki, Finland
[7] Helsinki Univ Hosp, Helsinki, Finland
[8] TietoEvry, Benchmarking Serv, Hlth & Care, Helsinki, Finland
[9] Univ Helsinki, Dept Neurosurg, Helsinki, Finland
关键词
Case mix; In-hospital mortality; Intensive care; Prediction model; Transportability; Validation; CHRONIC HEALTH EVALUATION; ACUTE PHYSIOLOGY SCORE; HOSPITAL MORTALITY; RISK PREDICTION; PROGNOSTIC MODEL; VALIDATION; APACHE; SEVERITY; OUTCOMES; PATIENT;
D O I
10.1016/j.jclinepi.2021.11.028
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: Prognostic models are key for benchmarking intensive care units (ICUs). They require up-to-date predictors and should report transportability properties for reliable predictions. We developed and validated an in-hospital mortality risk prediction model to facilitate benchmarking, quality assurance, and health economics evaluation. Study Design and Setting: We retrieved data from the database of an international (Finland, Estonia, Switzerland) multicenter ICU cohort study from 2015 to 2017. We used a hierarchical logistic regression model that included age, a modified Simplified Acute Physiology Score-II, admission type, premorbid functional status, and diagnosis as grouping variable. We used pooled and meta-analytic cross-validation approaches to assess temporal and geographical transportability. Results: We included 61,224 patients treated in the ICU (hospital mortality 10.6%). The developed prediction model had an area under the receiver operating characteristic curve 0.886, 95% confidence interval (CI) 0.882-0.890; a calibration slope 1.01, 95% CI (0.99-1.03); a mean calibration -0.004, 95% CI (-0.035 to 0.027). Although the model showed very good internal validity and geographic discrimination transportability, we found substantial heterogeneity of performance measures between ICUs (I-squared: 53.4-84.7%). Conclusion: A novel framework evaluating the performance of our prediction model provided key information to judge the validity of our model and its adaptation for future use. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http:// creativecommons.org/ licenses/ by/ 4.0/ )
引用
收藏
页码:230 / 241
页数:12
相关论文
共 43 条
[1]   The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
STATISTICS IN MEDICINE, 2019, 38 (21) :4051-4065
[2]   Geographic and temporal validity of prediction models: different approaches were useful to examine model performance [J].
Austin, Peter C. ;
van Klaveren, David ;
Vergouwe, Yvonne ;
Nieboer, Daan ;
Lee, Douglas S. ;
Steyerberg, Ewout W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 79 :76-85
[3]   Using the Johns Hopkins Aggregated Diagnosis Groups (ADGs) to Predict Mortality in a General Adult Population Cohort in Ontario, Canada [J].
Austin, Peter C. ;
van Walraven, Carl ;
Wodchis, Walter P. ;
Newman, Alice ;
Anderson, Geoffrey M. .
MEDICAL CARE, 2011, 49 (10) :932-939
[4]   Prediction models for clustered data: comparison of a random intercept and standard regression model [J].
Bouwmeester, Walter ;
Twisk, Jos W. R. ;
Kappen, Teus H. ;
van Klei, Wilton A. ;
Moons, Karel G. M. ;
Vergouwe, Yvonne .
BMC MEDICAL RESEARCH METHODOLOGY, 2013, 13
[5]   External validation of Acute Physiology and Chronic Health Evaluation IV in Dutch intensive care units and comparison with Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology Score II [J].
Brinkman, Sylvia ;
Bakhshi-Raiez, Ferishta ;
Abu-Hanna, Ameen ;
de Jonge, Evert ;
Bosman, Robert J. ;
Peelen, Linda ;
de Keizer, Nicolette F. .
JOURNAL OF CRITICAL CARE, 2011, 26 (01) :105.e11-105.e18
[6]   Implementation of the Frailty Index in hospitalized older patients: Results from the REPOSI register [J].
Cesari, M. ;
Franchi, C. ;
Cortesi, L. ;
Nobili, A. ;
Ardoino, I ;
Mannucci, P. M. .
EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2018, 56 :11-18
[7]   Sample size considerations for the external validation of a multivariable prognostic model: a resampling study [J].
Collins, Gary S. ;
Ogundimu, Emmanuel O. ;
Altman, Douglas G. .
STATISTICS IN MEDICINE, 2016, 35 (02) :214-226
[8]  
Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]
[9]   The added value that increasing levels of diagnostic information provide in prognostic models to estimate hospital mortality for adult intensive care patients [J].
de Keizer, NF ;
Bonsel, GJ ;
Goldfad, C ;
Rowan, KM .
INTENSIVE CARE MEDICINE, 2000, 26 (05) :577-584
[10]   A new framework to enhance the interpretation of external validation studies of clinical prediction models [J].
Debray, Thomas P. A. ;
Vergouwe, Yvonne ;
Koffijberg, Hendrik ;
Nieboer, Daan ;
Steyerberg, Ewout W. ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (03) :280-289