Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes

被引:110
作者
Mishra, Neeraj [1 ]
Das, Gobind [2 ]
Ansaldo, Alberto [3 ]
Genovese, Alessandro [2 ]
Malerba, Mario [2 ]
Povia, Mauro [2 ]
Ricci, Davide [3 ]
Di Fabrizio, Enzo [2 ]
Di Zitti, Ermanno [4 ]
Sharon, Madhuri [5 ]
Sharon, Maheshwar [5 ]
机构
[1] Birla Coll Arts Sci & Commerce, Nanotechnol Res Ctr NTRC, Thana 421301, Maharashtra, India
[2] Italian Inst Technol, Nanobiotech Facil, I-16163 Genoa, Italy
[3] Italian Inst Technol, Soft Mat Design Lab, Dept Robot Brain & Cognit Sci, I-16163 Genoa, Italy
[4] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
[5] NSN Res Ctr Nanotechnol & Bionanotechnol, Ambernath W, Maharashtra, India
关键词
Polypropylene; Pyrolysis; MWCNTs; XRD; Raman scattering; SEM; TEM; HRTEM; CATALYTIC PYROLYSIS; GROWTH; DECOMPOSITION; POLYETHYLENE; POLYMERS; PLASTICS; PLASMA;
D O I
10.1016/j.jaap.2011.11.012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Waste polypropylene (PP) is used as precursor for synthesizing multi-walled carbon nanotubes (MWCNTs) by single stage chemical vapor deposition (CVD) method using nickel as catalyst. The pyrolytic degradation of PP to MWCNT was achieved by exposing the catalyst and precursor to temperature 600,700 and 800 C under argon and hydrogen atmosphere for an hour. The resultant carbon was purified and characterized by XRD, Raman scattering, SEM, TEM and HRTEM. All the analysis confirmed the graphitic nature and multi-walled morphology of the CNT. Moreover the MWCNT was found to exhibit high transmittance to visible light up to 85% at 550 nm, comparable to that of typical ITO films (90%), suggesting that MWCNTs can be used for optoelectronic devices. The present work could be employed for synthesizing CNTs, having wide range of applications, and for environment protection as well since waste plastic is being used. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 38 条
[1]   Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms [J].
Aboulkas, A. ;
El Harfi, K. ;
El Bouadili, A. .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (07) :1363-1369
[2]   Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP) [J].
Achilias, D. S. ;
Roupakias, C. ;
Megalokonomos, P. ;
Lappas, A. A. ;
Antonakou, E. V. .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 149 (03) :536-542
[3]  
Aguado J, 2007, GLOBAL NEST J, V9, P12
[4]   An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins [J].
Arena, U ;
Mastellone, ML ;
Camino, G ;
Boccaleri, E .
POLYMER DEGRADATION AND STABILITY, 2006, 91 (04) :763-768
[5]   FORMATION OF FILAMENTOUS CARBON FROM IRON, COBALT AND CHROMIUM CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
HARRIS, PS ;
THOMAS, RB ;
WAITE, RJ .
JOURNAL OF CATALYSIS, 1973, 30 (01) :86-95
[6]  
Biso M., 2010, IEEE NANO 2009, P481
[7]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[8]   Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons [J].
Colomer, JF ;
Bister, G ;
Willems, I ;
Kónya, Z ;
Fonseca, A ;
Van Tendeloo, G ;
Nagy, JB .
CHEMICAL COMMUNICATIONS, 1999, (14) :1343-1344
[9]   Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere [J].
Cui, S ;
Scharff, P ;
Siegmund, C ;
Schneider, D ;
Risch, K ;
Klötzer, S ;
Spiess, L ;
Romanus, H ;
Schawohl, J .
CARBON, 2004, 42 (5-6) :931-939
[10]   The role of the catalytic particle temperature gradient for SWNT growth from small particles [J].
Ding, F ;
Rosén, A ;
Bolton, K .
CHEMICAL PHYSICS LETTERS, 2004, 393 (4-6) :309-313