From Navier-Stokes equations to shallow waters with viscosity by asymptotic analysis

被引:0
作者
Rodríguez, JM
Taboada-Vázquez, R
机构
[1] Univ A Coruna, Dept Metodos Matemat & Representac, ETS Arquitectura, La Coruna 15071, Spain
[2] Univ A Coruna, Dept Metodos Matemat & Representac, ES Marina Civil, La Coruna 15071, Spain
关键词
asymptotic analysis; shallow waters with viscosity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Navier-Stokes equations in a domain with small depth. With this aim, we introduce a small adimensional parameter epsilon related to the depth. First we make a change of variable to a domain independent of epsilon and then we use asymptotic analysis to study what happens when epsilon becomes small. In this way we obtain a model for epsilon small that, after coming back to the original domain and without making a priori assumptions about velocity or pressure behavior, gives us a shallow water model including a new diffusion term.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 16 条
[11]   GLOBAL EXISTENCE OF CLASSICAL-SOLUTIONS IN THE DISSIPATIVE SHALLOW-WATER EQUATIONS [J].
KLOEDEN, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (02) :301-315
[12]  
RODRIGUEZ JM, IN PRESS EULER EQUAT
[13]   Global existence for the Cauchy problem for the viscous shallow water equations [J].
Sundbye, L .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (03) :1135-1152
[14]  
TABOADAVAZQUEZ R, THESIS
[15]  
Tan W.Y., 1992, Shallow Water Hydrodynamics, Vfirst
[16]  
Zeytounian R.K., 1994, MODELISATION ASYMPTO