From Navier-Stokes equations to shallow waters with viscosity by asymptotic analysis

被引:0
作者
Rodríguez, JM
Taboada-Vázquez, R
机构
[1] Univ A Coruna, Dept Metodos Matemat & Representac, ETS Arquitectura, La Coruna 15071, Spain
[2] Univ A Coruna, Dept Metodos Matemat & Representac, ES Marina Civil, La Coruna 15071, Spain
关键词
asymptotic analysis; shallow waters with viscosity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Navier-Stokes equations in a domain with small depth. With this aim, we introduce a small adimensional parameter epsilon related to the depth. First we make a change of variable to a domain independent of epsilon and then we use asymptotic analysis to study what happens when epsilon becomes small. In this way we obtain a model for epsilon small that, after coming back to the original domain and without making a priori assumptions about velocity or pressure behavior, gives us a shallow water model including a new diffusion term.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1996, Handbook of Numerical Analysis, Volume 4: Finite Element Methods (Part 2)-Numerical Methods for Solids (Part 2)
[2]  
[Anonymous], 1997, STUD MATH APPL
[3]  
AUDUSSE E, 2000, 3989 I NAT RECH INF, P1
[4]   Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics [J].
Azérad, P ;
Guillén, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) :847-859
[5]  
BERNARDI C, 1991, COMMUN PART DIFF EQ, V16, P59
[6]   Long-time shallow-water equations with a varying bottom [J].
Camassa, R ;
Holm, DD ;
Levermore, CD .
JOURNAL OF FLUID MECHANICS, 1997, 349 :173-189
[7]  
Castro M.J., 1994, MODELO MATEMATICO CO
[8]  
Ciarlet P.G., 2000, MATH ELASTICITY, V3
[9]  
Destuynder P., 1986, Une Theorie asymptotique des plaques minces en elasticite lineaire
[10]  
Gerbeau JF, 2001, DISCRETE CONT DYN-B, V1, P89