NEURAL NETWORK-BASED MODELS OF BINOMIAL TIME SERIES IN DATA ANALYSIS PROBLEMS

被引:2
作者
Kharin, Yuriy S. [1 ]
机构
[1] Belarusian State Univ, Res Inst Appl Problems Math & Informat, 4,Nezavisimosti Ave, Minsk 220030, BELARUS
来源
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI | 2021年 / 65卷 / 06期
关键词
discrete-valued time series; Markov chain; neural networks-based model; estimators; data analysis;
D O I
10.29235/1561-8323-2021-65-6-654-660
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article is devoted to constructing neural network-based models for discrete-valued time series and their use in computer data analysis. A new family of binomial time series based on neural networks is presented, which makes it possible to approximate the arbitrary-type stochastic dependence in time series. Ergodicity conditions and an equivalence relation for these models are determined. Consistent statistical estimators for model parameters and algorithms for computer data analysis (including forecasting and pattern recognition) are developed.
引用
收藏
页码:654 / 660
页数:7
相关论文
共 8 条
[1]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[2]  
Fan Jianqing, 2020, Statistical Foundations of Data Science
[3]   Statistical analysis of multivariate discrete-valued time series [J].
Fokianos, Konstantinos ;
Fried, Roland ;
Kharin, Yuriy ;
Voloshko, Valeriy .
JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
[4]  
Kellenher J. D., DATA SCI
[5]   Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies [J].
Kharin, Yuriy ;
Voloshko, Valeriy .
JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
[6]  
KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953
[7]  
Yu Kharin, 2013, ROBUSTNESS STAT FORE, DOI [10.1007/978-3-319-00840-0, DOI 10.1007/978-3-319-00840-0]
[8]  
Yu Kharin, 1996, ROBUSTNESS STAT PATT, DOI [10.1007/978-94-015-8630-6, DOI 10.1007/978-94-015-8630-6]