An easier proof of the maximal arcs conjecture

被引:15
作者
Ball, S [1 ]
Blokhuis, A [1 ]
机构
[1] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
D O I
10.1090/S0002-9939-98-04653-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was a long-standing conjecture in finite geometry that a Desarguesian plane of odd order contains no maximal arcs. A rather inaccessible and long proof was given recently by the authors in collaboration with Mazzocca. In this paper a new observation leads to a greatly simplified proof of the conjecture.
引用
收藏
页码:3377 / 3380
页数:4
相关论文
共 7 条
[1]   Maximal arcs in Desarguesian planes of odd order do not exist [J].
Ball, S ;
Blokhuis, A ;
Mazzocca, F .
COMBINATORICA, 1997, 17 (01) :31-41
[2]  
Cossu A., 1961, REND MAT APPL, V5, P271
[3]  
Denniston R. H. F., 1969, J. Combin. Theory, V6, P317, DOI DOI 10.1016/S0021-9800(69)80095-5
[4]  
Redei L., 1973, Lacunary Polynomials Over Finite Fields
[5]  
Thas J.A., 1974, Geometriae Dedicata, V3, P61, DOI 10.1007/BF00181361
[6]  
Thas J.A., 1980, European Journal of Combinatorics, V1, P189, DOI [10.1016/S0195-6698(80)80052-7, DOI 10.1016/S0195-6698(80)80052-7]
[7]   SOME RESULTS CONCERNING [(Q+1)(N-1)-N]-ARCS AND [(Q+1)(N-1)+1-N]-ARCS IN FINITE PROJECTIVE PLANES OF ORDER Q [J].
THAS, JA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (02) :228-232