DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation

被引:36
作者
Kamraoui, Reda Abdellah [1 ]
Ta, Vinh-Thong [1 ]
Tourdias, Thomas [3 ,4 ]
Mansencal, Boris [1 ]
Manjon, Jose, V [2 ]
Coupe, Pierrick [1 ]
机构
[1] Univ Bordeaux, PICTURA, UMR5800, CNRS,Bordeaux INP,LaBRI, F-33400 Talence, France
[2] Univ Politcn Valncia, ITACA, Valencia 46022, Spain
[3] Univ Bordeaux, Neuroctr Magendie, U1215, INSERM, F-3300 Bordeaux, France
[4] Univ Bordeaux, Serv Neuroimagerie Diagnost & Thrapeut, F-33000 Bordeaux, France
关键词
Multiple sclerosis segmentation; Deep learning; Domain generalization; MEDICAL IMAGE SEGMENTATION; WHITE-MATTER LESIONS; NETWORKS;
D O I
10.1016/j.media.2021.102312
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising per-formance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even out-performed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmenta-tion Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and per-forming well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially dis-tributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized net-works. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization per-formance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice. (c) 2021 Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 44 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Aslani S, 2020, I S BIOMED IMAGING, P781, DOI [10.1109/ISBI45749.2020.9098721, 10.1109/isbi45749.2020.9098721]
  • [3] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    [J]. NEUROIMAGE, 2019, 196 : 1 - 15
  • [4] Bron E. E., 2020, ARXIV PREPRINT ARXIV
  • [5] Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Tang, Lisa Y. W.
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1229 - 1239
  • [6] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [7] A joint registration and segmentation approach to skull stripping
    Carass, Aaron
    Wheeler, M. Bryan
    Cuzzocreo, Jennifer
    Bazin, Pierre-Louis
    Bassett, Susan S.
    Prince, Jerry L.
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 656 - +
  • [8] Chollet F, 2015, KERAS
  • [9] Commowick O., 2016, MSSEG CHALLENGE P MU
  • [10] Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
    Commowick, Olivier
    Istace, Audrey
    Kain, Michael
    Laurent, Baptiste
    Leray, Florent
    Simon, Mathieu
    Pop, Sorina Camarasu
    Girard, Pascal
    Ameli, Roxana
    Ferre, Jean-Christophe
    Kerbrat, Anne
    Tourdias, Thomas
    Cervenansky, Frederic
    Glatard, Tristan
    Beaumont, Jeremy
    Doyle, Senan
    Forbes, Florence
    Knight, Jesse
    Khademi, April
    Mahbod, Amirreza
    Wang, Chunliang
    McKinley, Richard
    Wagner, Franca
    Muschelli, John
    Sweeney, Elizabeth
    Roura, Eloy
    Llado, Xavier
    Santos, Michel M.
    Santos, Wellington P.
    Silva-Filho, Abel G.
    Tomas-Fernandez, Xavier
    Urien, Helene
    Bloch, Isabelle
    Valverde, Sergi
    Cabezas, Mariano
    Javier Vera-Olmos, Francisco
    Malpica, Norberto
    Guttmann, Charles
    Vukusic, Sandra
    Edan, Gilles
    Dojat, Michel
    Styner, Martin
    Warfield, Simon K.
    Cotton, Francois
    Barillot, Christian
    [J]. SCIENTIFIC REPORTS, 2018, 8