Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations

被引:40
作者
Suen, Jonathan Y. [1 ]
Fang, Michael T. [2 ]
Denny, Sean P. [2 ]
Lubin, Philip M. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
Satellite communication; satellite ground stations; submillimeter wave communication; submillimeter wave propagation; WATER-VAPOR; STATISTICS;
D O I
10.1109/TTHZ.2015.2399694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric attenuation. We modeled a ground to geostationary satellite link and found that using large aperture THz stations, patterned after the 12.5 m Atacama Large Microwave Array dish and the 3.5 m Herschel Space Observatory optics, worst 10th percentile data rates in excess of one terabit per second in the THz bands are possible. The key is to site ground stations in dry regions. We locate these by coupling our link model, which selects optimum modulation and carrier bandwidth, with global, high-resolution satellite water vapor measurements. We present detailed maps showing modeled link performance over the surface of the Earth. Smaller apertures on aircraft and balloons are also able to exceed 1 terabit/second due to their location above nearly all water vapor. Compared to free-space optical links, evidence suggests THz systems are superior where fog, cloud cover and clear-air turbulence are of concern.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 29 条
[1]  
Albrecht JD, 2010, IEEE MTT S INT MICR, P1118, DOI 10.1109/MWSYM.2010.5517258
[2]  
ALMA, 2013, ALMA CYCL 2 TECHN HD, P115
[3]  
[Anonymous], 2012, AM ATMOSPHERIC MODEL
[4]  
Booske J. H., 2001, 9 INT C THZ EL CHAR
[5]   Global Coverage of Total Precipitable Water Using a Microwave Variational Algorithm [J].
Boukabara, Sid-Ahmed ;
Garrett, Kevin ;
Chen, Wanchun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3608-3621
[6]  
BROWN ER, 2004, TERAHERTZ SENSING TE, V2
[7]  
Bustos R., 2000, 333 NRAO
[8]   Free-space optical communications [J].
Chan, Vincent W. S. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4750-4762
[9]   Optical space communications [J].
Chan, VWS .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :959-975
[10]   Fundamental limits of detection in the far infrared [J].
Denny, S. P. ;
Suen, J. Y. ;
Lubin, P. M. .
NEW ASTRONOMY, 2013, 25 :114-129