Symmetry, integrable chain models and stochastic processes

被引:3
作者
Albeverio, S [1 ]
Fei, SM [1 ]
机构
[1] Ruhr Univ Bochum, Inst Math, D-44780 Bochum, Germany
关键词
D O I
10.1142/S0129055X98000239
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general way to construct chain models with certain Lie algebraic or quantum Lie algebraic symmetries is presented. These symmetric models give rise to series of integrable systems. As an example the chain models with A, symmetry and the related Temperley-Lieb algebraic structures and representations are discussed. It is shown that corresponding to these A, symmetric integrable chain models there are exactly solvable stationary discrete-time (resp. continuous-time) Markov chains with transition matrices (resp. intensity matrices) having spectra which coincide with the ones of the corresponding integrable models.
引用
收藏
页码:723 / 750
页数:28
相关论文
共 55 条
[1]   Integrable Poisson algebras and two-dimensional manifolds [J].
Albeverio, S ;
Fei, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1211-1218
[2]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[3]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[4]   LATTICE DIFFUSION AND HEISENBERG-FERROMAGNET [J].
ALEXANDER, S ;
HOLSTEIN, T .
PHYSICAL REVIEW B, 1978, 18 (01) :301-302
[5]   SPECTRUM OF THE TRANSFER-MATRIX FOR THE U-Q(B-N)-INVARIANT A(2N)((2)) OPEN SPIN CHAIN [J].
ARTZ, S ;
MEZINCESCU, L ;
NEPOMECHIE, RI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (13) :1937-1952
[6]   ANALYTICAL BETHE-ANSATZ FOR A(2N-1)((2)), B-N((1)), C-N((1)), D-N((1)) QUANTUM-ALGEBRA-INVARIANT OPEN SPIN CHAINS [J].
ARTZ, S ;
MEZINCESCU, L ;
NEPOMECHIE, RI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (18) :5131-5142
[7]   TEMPERLEY-LIEB LATTICE MODELS ARISING FROM QUANTUM GROUPS [J].
BATCHELOR, MT ;
KUNIBA, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11) :2599-2614
[8]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[9]  
Chari V., 1995, A Guide to Quantum Groups
[10]  
Chung K. L., 1967, MARKOV CHAINS STATIO