Nonlinear Schrodinger equations with strongly singular potentials

被引:10
|
作者
Bellazzini, Jacopo [1 ]
Bonanno, Claudio [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
关键词
FIELD-EQUATIONS; WAVES;
D O I
10.1017/S0308210509001401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look for standing waves for nonlinear Schrodinger equations i partial derivative psi/partial derivative t + Delta psi - g(vertical bar y vertical bar)psi - W'(vertical bar psi vertical bar) psi/vertical bar psi vertical bar = 0 with cylindrically symmetric potentials g vanishing at infinity and non-increasing, and a C(1) nonlinear term satisfying weak assumptions. In particular, we show the existence of standing waves with non-vanishing angular momentum with prescribed L(2) norm. The solutions are obtained via a minimization argument, and the proof is given for an abstract functional which presents a lack of compactness. As a specific case, we prove the existence of standing waves with non-vanishing angular momentum for the nonlinear hydrogen atom equation.
引用
收藏
页码:707 / 721
页数:15
相关论文
共 50 条
  • [1] Standing waves for nonlinear Schrodinger equations with singular potentials
    Byeon, Jaeyoung
    Wang, Zhi-Qiang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 943 - 958
  • [2] Optimal bilinear control of nonlinear Schrodinger equations with singular potentials
    Feng, Binhua
    Zhao, Dun
    Chen, Pengyu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 12 - 21
  • [3] GROUND STATES FOR A SYSTEM OF NONLINEAR SCHRODINGER EQUATIONS WITH SINGULAR POTENTIALS
    Chen, P. E. N. G.
    Tang, X. I. A. N. H. U. A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 5105 - 5136
  • [4] EXISTENCE OF SOLUTIONS TO NONLINEAR FRACTIONAL SCHRODINGER EQUATIONS WITH SINGULAR POTENTIALS
    Wang, Qingxuan
    Zhao, Dun
    Wang, Kai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [6] Schrodinger equations with singular potentials: linear and nonlinear boundary value problems
    Marcus, Moshe
    Phuoc-Tai Nguyen
    MATHEMATISCHE ANNALEN, 2019, 374 (1-2) : 361 - 394
  • [7] Commutation methods for Schrodinger operators with strongly singular potentials
    Kostenko, Aleksey
    Sakhnovich, Alexander
    Teschl, Gerald
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (04) : 392 - 410
  • [8] On spectral theory for Schrodinger operators with strongly singular potentials
    Gesztesy, Fritz
    Zinchenko, Maxim
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (9-10) : 1041 - 1082
  • [9] Quasilinear Schrodinger equations involving singular potentials
    Jing, Yongtao
    Liu, Haidong
    Liu, Zhaoli
    NONLINEARITY, 2022, 35 (04) : 1810 - 1856
  • [10] Scattering by singular potentials in coupled Schrodinger equations
    Christiansen, Peter L. L.
    Rasmussen, Jens Juul
    Sorensen, Mads Peter
    LOW TEMPERATURE PHYSICS, 2022, 48 (12) : 1033 - 1037