STRAIGHTENING THE SPINAL CORD USING FIBRE TRACTOGRAPHY

被引:1
作者
Wassermann, D. [1 ]
Cohen-Adad, J. [2 ,4 ]
Lehericy, S. [3 ]
Benali, H. [4 ]
Rossignol, S. [5 ]
Deriche, R. [1 ]
机构
[1] INRIA Sophia Antipolis Mediterranee, EPI Athena, 2004 Route Lucioles, Sophia Antipolis, France
[2] MGH, Athinoula A Martinos Ctr Biomed Imaging, Harvard Med Sch, Charlestown, MA USA
[3] UPMC Univ Paris 06, Pitie Salpetriere Hosp, Ctr Neuroimaging Res, Paris, France
[4] UPMC Univ Paris 06, INSERM, Lab Imagerie Fonctionnelle, UMRS 678, Paris, France
[5] Univ Montreal, Grp Rec Syst Nerveux Cent, Dept Physiol, Montreal, PQ, Canada
来源
2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2010年
关键词
Diffusion MRI; Spinal Cord; Tractography; Straightening; Gaussian Processes; TRACKING; BRAIN;
D O I
10.1109/ISBI.2010.5490254
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Spinal Cord MRI (SC-MRI) is a challenging research field with numerous important clinical and basic research applications. Some of the SC-MRI applications strongly need to deal with a well straightened spinal cord either for appropriate methodological developments, for better visualization or diagnostic purposes. In this article, we develop an efficient and automatic method to straighten the spinal cord image and fibres. Diffusion Tensor MRI is first used to recover by tractography the bundles of fibres contained in the spinal cord white matter. An efficient Gaussian process framework is then used to automatically recover in a robust way the most representative fibre which is used to interpolate and straighten the spinal cord image and fibres. Our method is successfully tested on real images of one cat with partial spinal cord injury and two healthy volunteers. This capability to reliably reconstruct straightened animal and human spinal cord opens new opportunities for SC-MRI research.
引用
收藏
页码:1377 / 1380
页数:4
相关论文
共 14 条
[1]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[2]   Quantification of the shape of fiber tracts [J].
Batchelor, PG ;
Calamante, F ;
Tournier, JD ;
Atkinson, D ;
Hill, DLG ;
Connelly, A .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (04) :894-903
[3]   In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution [J].
Cohen-Adad, J. ;
Benali, H. ;
Hoge, R. D. ;
Rossignol, S. .
NEUROIMAGE, 2008, 40 (02) :685-697
[4]  
Fillard P., 2006, SIMILAR TENSOR WORKS, V5, P7
[5]  
HORSFIELD MA, 2010, NEUROIMAGE IN PRESS
[6]  
MacKay D., 1998, NATO ASI Ser. F Comput. Syst. Sci, V168, P133
[7]   A unified framework for clustering and quantitative analysis of white matter fiber tracts [J].
Maddah, Mahnaz ;
Grimson, W. Eric L. ;
Warfield, Simon K. ;
Wells, William M. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (02) :191-202
[8]  
Mori S, 1999, ANN NEUROL, V45, P265, DOI 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO
[9]  
2-3
[10]   Tract-based morphometry for white matter group analysis [J].
O'Donnell, Lauren J. ;
Westin, Carl-Fredrik ;
Golby, Alexandra J. .
NEUROIMAGE, 2009, 45 (03) :832-844