On the distance sets of Ahlfors-David regular sets

被引:22
作者
Orponen, Thomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
基金
芬兰科学院;
关键词
Distance sets; Packing dimension; Entropy;
D O I
10.1016/j.aim.2016.11.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
prove that if empty set not equal K subset of R-2 is a compact s-Ahlfors-David regular set with s >= 1, then dim(p) D(K) = 1, where D(K) := {vertical bar x - y vertical bar : x, y is an element of K} is the distance set of K, and dime stands for packing dimension. The same proof strategy applies to other problems of similar nature. For instance, one can show that if empty set not equal K subset of R-2 is a compact s-Ahlfors David regular set with s >= 1, then there exists a point x(0) is an element of K such that dime K . (K - x(0)) = 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1029 / 1045
页数:17
相关论文
共 13 条
[1]  
[Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
[2]  
[Anonymous], P LOND MATH SOC 2
[3]  
Barany B., FUND MATH IN PRESS
[4]   On the Erdos-Volkmann and Katz-Tao ring conjectures [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :334-365
[5]   ON THE HAUSDORFF DIMENSIONS OF DISTANCE SETS [J].
FALCONER, KJ .
MATHEMATIKA, 1985, 32 (64) :206-212
[6]   Scaling scenery of ( xm, xn) invariant measures [J].
Ferguson, Andrew ;
Fraser, Jonathan M. ;
Sahlsten, Tuomas .
ADVANCES IN MATHEMATICS, 2015, 268 :564-602
[7]   Micromeasure distributions and applications for conformally generated fractals [J].
Fraser, Jonathan M. ;
Pollicott, Mark .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (03) :547-566
[8]   On the Erdos distinct distances problem in the plane [J].
Guth, Larry ;
Katz, Nets Hawk .
ANNALS OF MATHEMATICS, 2015, 181 (01) :155-190
[9]   On self-similar sets with overlaps and inverse theorems for entropy [J].
Hochman, Michael .
ANNALS OF MATHEMATICS, 2014, 180 (02) :773-822
[10]  
Marstrand J., 1954, Proc. London Math. Soc., V3, P257, DOI [DOI 10.1112/PLMS/S3-4.1.257, 10.1112/plms/s3-4.1.257]