Optimal Control of Nonlinear Fractional-Order Systems with Multiple Time-Varying Delays

被引:16
作者
Liu, Chongyang [1 ,2 ]
Gong, Zhaohua [1 ]
Teo, Kok Lay [3 ,4 ]
Wang, Song [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Curtin Univ, Sch Elect Engn Comp & Math Sci, Perth, WA 6845, Australia
[3] Sunway Univ, Sch Math Sci, Kuala Lumpur 47500, Malaysia
[4] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Fractional-order system; Time-varying delay; Optimal control; Discretization scheme; Gradient computation; NUMERICAL-SOLUTION;
D O I
10.1007/s10957-021-01935-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper considers an optimal control problem governed by nonlinear fractional-order systems with multiple time-varying delays and subject to canonical constraints, where the fractional-order derivatives are expressed in the Caputo sense. To solve the problem by discretization scheme, an explicit numerical integration technique is proposed for solving the fractional-order system, and the trapezoidal rule is introduced to approximate the cost functional. Then, the gradients of the resulting cost and constraint functions are derived. On the basis of this result, we develop a gradient-based optimization algorithm to numerically solve the discretized problem. Finally, numerical results of several non-trivial examples are provided to illustrate the applicability and effectiveness of the proposed algorithm.
引用
收藏
页码:856 / 876
页数:21
相关论文
共 36 条
[1]   A discrete method to solve fractional optimal control problems [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
NONLINEAR DYNAMICS, 2015, 80 (04) :1811-1816
[2]  
[Anonymous], 2019, P WORLD C GLOB OPT
[3]  
Baleanu D., 2012, Fractional Dynamics and Control, DOI [DOI 10.1007/978-1-4614-0457-6, 10.1007/978-1-4614-0457-6]
[4]   Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints [J].
Bergounioux, Maitine ;
Bourdin, Loic .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
[5]  
Bonnans JF., 2006, Numerical optimization: theoretical and practical aspects
[6]  
Chen CL, 2000, OPTIM CONTR APPL MET, V21, P91, DOI 10.1002/1099-1514(200005/06)21:3<91::AID-OCA669>3.0.CO
[7]  
2-C
[8]   OPTIMAL CONTROL OF NONLINEAR TIME-DELAY FRACTIONAL DIFFERENTIAL EQUATIONS WITH DICKSON POLYNOMIALS [J].
Chen, Shu-Bo ;
Soradi-Zeid, Samaneh ;
Alipour, Maryam ;
Chu, Yu-Ming ;
Gomez-Aguilar, J. F. ;
Jahanshahi, Hadi .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
[9]  
Cresson J., 2014, Fractional Calculus in Analysis, Dynamics and Optimal Control
[10]   OPTIMAL-CONTROL OF TIME-DELAY SYSTEMS BY DYNAMIC-PROGRAMMING [J].
DADEBO, S ;
LUUS, R .
OPTIMAL CONTROL APPLICATIONS & METHODS, 1992, 13 (01) :29-41