Centralizers in endomorphism rings

被引:3
作者
Drensky, Vesselin [1 ]
Szigeti, Jeno [2 ]
van Wyk, Leon [3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
[3] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
Centralizer; Module endomorphism; Nilpotent Jordan normal base;
D O I
10.1016/j.jalgebra.2010.09.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the centralizer Cen(phi) subset of End(R)(M) of a nilpotent endomorphism phi of a finitely generated semisimple left R module (R)M (over an arbitrary ring R) is the homomorphic Image of the opposite of a certain Z(R)-subalgebra of the full m x m matrix algebra M(m)(R[z]) where m is the dimension of ker(phi) If R is a local ring then we give a complete characterization of Cen(phi) and of the containment Cen(phi) subset of Cen(sigma) where a is a not necessarily nilpotent element of EndR(M) For a K-linear map A of a finite dimensional vector space over a field K we determine the PI-degree of Cen(A) (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:3378 / 3387
页数:10
相关论文
共 8 条
[1]  
DRENSKY V, 2009, ARXIV09102357V1MATHR
[2]  
Gantmacher FR., 2000, The theory of matrices
[3]  
Giambruno A., 2005, Polynomial Identities and Asymptotic Methods, V122
[4]   Commuting pairs in the centralizers of 2-regular matrices [J].
Neubauer, MG ;
Sethuraman, BA .
JOURNAL OF ALGEBRA, 1999, 214 (01) :174-181
[5]  
Prasolov V. V., 1994, TRANSL MATH MONOGR, V134
[6]  
Suprunenko DA., 1968, Commutative matrices
[7]   Linear algebra in lattices and nilpotent endomorphisms of semisimple modules [J].
Szigeti, Jeno .
JOURNAL OF ALGEBRA, 2008, 319 (01) :296-308
[8]  
Turnbull H. W., 2004, INTRO THEORY CANONIC