Smooth estimation of survival and density functions for a stationary associated process using Poisson weights

被引:11
作者
Chaubey, Yogendra P. [1 ]
Dewan, Isha
Li, Jun [1 ]
机构
[1] Concordia Univ, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Associated sequence; Hille's theorem; Strong consistency; Survival function; Transformation density estimator;
D O I
10.1016/j.spl.2010.10.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n, n >= 1) be a sequence of stationary non-negative associated random variables with common marginal density f (x). Here we use the empirical survival function as studied in Bagai and Prakasa Rao (1991) and apply the smoothing technique proposed by Gawronski (1980) (see also Chaubey and Sen, 1996) in proposing a smooth estimator of the density function f and that of the corresponding survival function. Some asymptotic properties of the resulting estimators, similar to those obtained in Chaubey and Sen (1996) for the i.i.d. case, are derived. A simulation study has been carried out to compare the new estimator to the kernel estimator of a density function given in Bagai and Prakasa Rao (1996) and the estimator in Buch-Larsen et al. (2005). Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 25 条
[1]   ESTIMATION OF THE SURVIVAL FUNCTION FOR STATIONARY ASSOCIATED PROCESSES [J].
BAGAI, I ;
RAO, BLSP .
STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) :385-391
[2]  
BAGAI I, 1996, SANKHYA A, V57, P56
[3]   A NOTE ON QUANTILES IN LARGE SAMPLES [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03) :577-&
[4]   Kernel density estimation for heavy-tailed distributions using the Champernowne transformation [J].
Buch-Larsen, T ;
Nielsen, JP ;
Guillén, M ;
Bolancé, C .
STATISTICS, 2005, 39 (06) :503-518
[5]  
Chaubey YP, 2009, PAK J STAT, V25, P385
[6]   On smooth estimation of mean residual life [J].
Chaubey, YP ;
Sen, PK .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 75 (02) :223-236
[7]  
Chaubey YP., 1996, STAT DECISIONS, V14, P1, DOI DOI 10.1524/STRM.1996.14.1.1
[8]   A general method of density estimation for associated random variables [J].
Dewan, I ;
Rao, BLSP .
JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 10 (04) :405-420
[9]  
Ekisheva SV., 2001, Fundam Prikl Mat, V7, P721
[10]   ASSOCIATION OF RANDOM VARIABLES WITH APPLICATIONS [J].
ESARY, JD ;
PROSCHAN, F ;
WALKUP, DW .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1466-&