Xyloglucan endotransglucosylase activity loosens a plant cell wall

被引:216
作者
Van Sandt, Vicky S. T. [1 ]
Suslov, Dmitry [1 ]
Verbelen, Jean-Pierre [1 ]
Vissenberg, Kris [1 ]
机构
[1] Univ Antwerp, Dept Biol, B-2020 Antwerp, Belgium
关键词
XTH; XET activity; primary cell wall; xyloglucan; cellulose microfibrils; cellulose orientation; cell expansion; cell wall loosening; extensiometry; onion (Allium cepa); Selaginella kraussiana;
D O I
10.1093/aob/mcm248
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims Plant cells undergo cell expansion when a temporary imbalance between the hydraulic pressure of the vacuole and the extensibility of the cell wall makes the cell volume increase dramatically. The primary cell walls of most seed plants consist of cellulose microfibrils tethered mainly by xyloglucans and embedded in a highly hydrated pectin matrix. During cell expansion the wall stress is decreased by the highly controlled rearrangement of the load-bearing tethers in the wall so that the microfibrils can move relative to each other. Here the effect was studied of a purified recombinant xyloglucan endotransglucosylase/hydrolase (XTH) on the extension of isolated cell walls. Methods The epidermis of growing onion (Allium cepa) bulb scales is a one-cell-thick model tissue that is structurally and mechanically highly anisotropic. In constant load experiments, the effect of purified recombinant XTH proteins of Selaginella kraussiana on the extension of isolated onion epidermis was recorded. Key Results Fluorescent xyloglucan endotransglucosylase (XET) assays demonstrate that exogeneous XTH can act on isolated onion epidermis cell walls. Furthermore, cell wall extension was significantly increased upon addition of XTH to the isolated epidermis, but only transverse to the net orientation of cellulose microfibrils. Conclusions The results provide evidence that XTHs can act as cell wall-loosening enzymes.
引用
收藏
页码:1467 / 1473
页数:7
相关论文
共 51 条
[1]   Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation [J].
Antosiewicz, DM ;
Purugganan, MM ;
Polisensky, DH ;
Braam, J .
PLANT PHYSIOLOGY, 1997, 115 (04) :1319-1328
[2]   Anisotropic expansion of the plant cell wall [J].
Baskin, TI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2005, 21 :203-222
[3]   Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator [J].
Becnel, Jaime ;
Natarajan, Mukil ;
Kipp, Alex ;
Braam, Janet .
PLANT MOLECULAR BIOLOGY, 2006, 61 (03) :451-467
[4]  
Brett C, 1996, PHYSL BIOCH PLANT CE
[5]   Auxin-induced changes in cell wall extensibility of maize roots [J].
Büntemeyer, K ;
Lüthen, H ;
Böttger, M .
PLANTA, 1998, 204 (04) :515-519
[6]   Structure and biogenesis of the cell walls of grasses [J].
Carpita, NC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :445-476
[7]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[8]   Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls [J].
Catala, C ;
Rose, JKC ;
Bennett, AB .
PLANT JOURNAL, 1997, 12 (02) :417-426
[9]   Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites [J].
Chanliaud, E ;
De Silva, J ;
Strongitharm, B ;
Jeronimidis, G ;
Gidley, MJ .
PLANT JOURNAL, 2004, 38 (01) :27-37
[10]   Expansins: expanding importance in plant growth and development [J].
Choi, D ;
Cho, HT ;
Lee, Y .
PHYSIOLOGIA PLANTARUM, 2006, 126 (04) :511-518