Targeting 3CLpro and SARS-CoV-2 RdRp by Amphimedon sp. Metabolites: A Computational Study

被引:6
|
作者
Shady, Nourhan Hisham [1 ]
Hayallah, Alaa M. [2 ,3 ]
Mohamed, Mamdouh F. A. [4 ]
Ghoneim, Mohammed M. [5 ,6 ]
Chilingaryan, Garri [7 ,8 ]
Al-Sanea, Mohammad M. [9 ]
Fouad, Mostafa A. [10 ]
Kamel, Mohamed Salah [1 ,10 ]
Abdelmohsen, Usama Ramadan [1 ,10 ]
机构
[1] Deraya Univ, Fac Pharm, Dept Pharmacognosy, New Minia City 61111, Egypt
[2] Assiut Univ, Fac Pharm, Dept Pharmaceut Organ Chem, Assiut 71526, Egypt
[3] Sphinx Univ, Fac Pharm, Pharmaceut Chem Dept, New Assiut 71515, Egypt
[4] Sohag Univ, Fac Pharm, Dept Pharmaceut Chem, Sohag 82524, Egypt
[5] AlMaarefa Univ, Coll Pharm, Dept Pharm Practice, Ad Diriyah 13713, Saudi Arabia
[6] Al Azhar Univ, Fac Pharm, Dept Pharmacognosy, Cairo 11371, Egypt
[7] NAS RA, Inst Mol Biol, Yerevan 0014, Armenia
[8] Russian Armenian Univ, Inst Biomed & Pharm, Yerevan 0051, Armenia
[9] Jouf Univ, Coll Pharm, Dept Pharmaceut Chem, Aljouf 72341, Saudi Arabia
[10] Minia Univ, Fac Pharm, Dept Pharmacognosy, Al Minya 61519, Egypt
来源
MOLECULES | 2021年 / 26卷 / 12期
关键词
COVID-19; coronavirus; molecular docking; Amphimedon sp; sponge; ANTICANCER ACTIVITY; NATURAL-PRODUCTS; INHIBITORS; DESIGN; PROTEASE;
D O I
10.3390/molecules26123775
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The main protease 3CLpro of the SARS-CoV-2 virus: how to turn an enemy into a helper
    Belenkaya, Svetlana V.
    Merkuleva, Iuliia A.
    Yarovaya, Olga I.
    Chirkova, Varvara Yu.
    Sharlaeva, Elena A.
    Shanshin, Daniil V.
    Volosnikova, Ekaterina A.
    Vatsadze, Sergey Z.
    Khvostov, Mikhail V.
    Salakhutdinov, Nariman F.
    Shcherbakov, Dmitriy N.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [42] The Repurposed Drugs Suramin and Quinacrine Cooperatively Inhibit SARS-CoV-2 3CLpro In Vitro
    Eberle, Raphael J.
    Olivier, Danilo S.
    Amaral, Marcos S.
    Gering, Ian
    Willbold, Dieter
    Arni, Raghuvir K.
    Coronado, Monika A.
    VIRUSES-BASEL, 2021, 13 (05):
  • [43] Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro
    Ferreira, Juliana C.
    Fadl, Samar
    Ilter, Metehan
    Pekel, Hanife
    Rezgui, Rachid
    Sensoy, Ozge
    Rabeh, Wael M.
    FASEB JOURNAL, 2021, 35 (08)
  • [44] In Silico Molecular Docking and Molecular Dynamic Simulation Analysis of Phytochemicals From Indian Foods as Potential Inhibitors of SARS-CoV-2 RdRp and 3CLpro
    Qazi, Sahar
    Das, Soumi
    Khuntia, Bharat Krushna
    Sharma, Vandna
    Sharma, Shruti
    Sharma, Gautam
    Raza, Khalid
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (09)
  • [45] Assessment of activity of chalcone compounds as inhibitors of 3-chymotrypsin like protease (3CLPro) of SARS-CoV-2: in silico study
    Mathpal, Shalini
    Joshi, Tushar
    Sharma, Priyanka
    Pande, Veena
    Chandra, Subhash
    STRUCTURAL CHEMISTRY, 2022, 33 (05) : 1815 - 1831
  • [46] Synthesis, in silico and in vitro studies of novel quinazolinone derivatives as potential SARS-CoV-2 3CLpro inhibitors
    Alamri, Mubarak A.
    Afzal, Obaid
    Akhtar, Md Jawaid
    Karim, Shahid
    Husain, Mohammed
    Alossaimi, Manal A.
    Riadi, Yassine
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (01)
  • [47] SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective
    Elfiky, Abdo A.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (09) : 3204 - 3212
  • [48] Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CLpro Inhibitors
    Rawson, Jonathan M. O.
    Duchon, Alice
    Nikolaitchik, Olga A.
    Pathak, Vinay K.
    Hu, Wei-Shau
    VIRUSES-BASEL, 2021, 13 (02):
  • [49] Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 Mpro/3CLpro in Living Cells
    Moghadasi, Seyed Arad
    Esler, Morgan A.
    Otsuka, Yuka
    Becker, Jordan T.
    Moraes, Sofia N.
    Anderson, Constance B.
    Chamakuri, Srinivas
    Belica, Christopher
    Wick, Chloe
    Harki, Daniel A.
    Young, Damian W.
    Scampavia, Louis
    Spicer, Timothy P.
    Shi, Ke
    Aihara, Hideki
    Brown, William L.
    Harris, Reuben S.
    MBIO, 2022, 13 (03):
  • [50] Integrating virtual screening, pharmacoinformatics profiling, and molecular dynamics: identification of promising inhibitors targeting 3CLpro of SARS-CoV-2
    Mohammad, Abeer
    Zheoat, Ahmed
    Oraibi, Amjad
    Manaithiya, Ajay
    Almaary, Khalid S.
    Nafidi, Hiba Allah
    Bourhia, Mohammed
    Kilani-Jaziri, Soumaya
    Bin Jardan, Yousef A.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2024, 10