Targeting 3CLpro and SARS-CoV-2 RdRp by Amphimedon sp. Metabolites: A Computational Study

被引:6
|
作者
Shady, Nourhan Hisham [1 ]
Hayallah, Alaa M. [2 ,3 ]
Mohamed, Mamdouh F. A. [4 ]
Ghoneim, Mohammed M. [5 ,6 ]
Chilingaryan, Garri [7 ,8 ]
Al-Sanea, Mohammad M. [9 ]
Fouad, Mostafa A. [10 ]
Kamel, Mohamed Salah [1 ,10 ]
Abdelmohsen, Usama Ramadan [1 ,10 ]
机构
[1] Deraya Univ, Fac Pharm, Dept Pharmacognosy, New Minia City 61111, Egypt
[2] Assiut Univ, Fac Pharm, Dept Pharmaceut Organ Chem, Assiut 71526, Egypt
[3] Sphinx Univ, Fac Pharm, Pharmaceut Chem Dept, New Assiut 71515, Egypt
[4] Sohag Univ, Fac Pharm, Dept Pharmaceut Chem, Sohag 82524, Egypt
[5] AlMaarefa Univ, Coll Pharm, Dept Pharm Practice, Ad Diriyah 13713, Saudi Arabia
[6] Al Azhar Univ, Fac Pharm, Dept Pharmacognosy, Cairo 11371, Egypt
[7] NAS RA, Inst Mol Biol, Yerevan 0014, Armenia
[8] Russian Armenian Univ, Inst Biomed & Pharm, Yerevan 0051, Armenia
[9] Jouf Univ, Coll Pharm, Dept Pharmaceut Chem, Aljouf 72341, Saudi Arabia
[10] Minia Univ, Fac Pharm, Dept Pharmacognosy, Al Minya 61519, Egypt
来源
MOLECULES | 2021年 / 26卷 / 12期
关键词
COVID-19; coronavirus; molecular docking; Amphimedon sp; sponge; ANTICANCER ACTIVITY; NATURAL-PRODUCTS; INHIBITORS; DESIGN; PROTEASE;
D O I
10.3390/molecules26123775
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Sensitive detection of SARS-CoV-2 main protease 3CLpro with an engineered ribonuclease zymogen
    Wralstad, Evans C.
    Raines, Ronald T.
    PROTEIN SCIENCE, 2024, 33 (04)
  • [22] Discovery of peptidomimetic spiropyrrolidine derivatives as novel 3CLpro inhibitors against SARS-CoV-2
    Guma, Samuel Desta
    Zhou, Zhaoyin
    Song, Kang
    Yang, Feipu
    Suo, Jin
    Zhang, Yan
    Bonku, Emmanuel Mintah
    Odilov, Abdullajon
    Tian, Guanghui
    Xu, Zhijian
    Jiang, Xiangrui
    Zhang, Qiumeng
    Zhu, Weiliang
    Shen, Jingshan
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2025, 281
  • [23] Molecular Docking Studies on the Anti-viral Effects of Compounds From Kabasura Kudineer on SARS-CoV-2 3CLpro
    Vincent, Savariar
    Arokiyaraj, Selvaraj
    Saravanan, Muthupandian
    Dhanraj, Manoj
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [24] In silico and in vitro assays reveal potential inhibitors against 3CLpro main protease of SARS-CoV-2
    Iype, Eldhose
    Jisha, Pillai U.
    Kumar, Indresh
    Gaastra-Nedea, Silvia V.
    Subramanian, Ramachandran
    Saha, Ranendra Narayan
    Dutta, Mainak
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (23) : 12800 - 12811
  • [25] Molecular Dynamics Simulation of Privileged Biflavonoids as SARS-CoV2 3CLpro Targeting Agents
    Vahabzadeh, Taha
    Miran, Mansour
    Razzaghi-Asl, Nima
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (05): : 569 - 582
  • [26] Quinoxaline derivatives as potent compounds against both 3CLpro and PLpro enzymes of SARS-CoV-2 virus: an insight from experimental and theoretical approaches
    Noroozi-Shad, Nazanin
    Sabet-Sarvestani, Hossein
    Moghimi, Vahid
    Afrough, Toktam
    Haghbeen, Kamahldin
    Eshghi, Hossein
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (33) : 14791 - 14800
  • [27] Would the Development of a Multitarget Inhibitor of 3CLpro and TMPRSS2 be Promising in the Fight Against SARS-CoV-2?
    Nascimento, Igor Jose dos Santos
    de Moura, Ricardo Olimpio
    MEDICINAL CHEMISTRY, 2023, 19 (05) : 405 - 412
  • [28] Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro
    Ma, Ling
    Li, Quanjie
    Xie, Yongli
    Zhao, Jianyuan
    Yi, Dongrong
    Guo, Saisai
    Guo, Fei
    Wang, Jing
    Yang, Long
    Cen, Shan
    ANTIVIRAL RESEARCH, 2022, 207
  • [29] A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study
    Jurica Novak
    Vladimir A. Potemkin
    Molecular Diversity, 2022, 26 : 2631 - 2645
  • [30] An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2
    Yan, Fangfang
    Gao, Feng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4868 - 4883