Full-length transcriptome sequences by a combination of sequencing platforms applied to isoflavonoid and triterpenoid saponin biosynthesis of Astragalus mongholicus Bunge

被引:9
作者
Yin, Minzhen [1 ,2 ,3 ]
Chu, Shanshan [1 ,4 ]
Shan, Tingyu [1 ]
Zha, Liangping [1 ,5 ]
Peng, Huasheng [1 ,2 ,3 ]
机构
[1] Anhui Univ Chinese Med, Sch Pharm, Hefei 230012, Peoples R China
[2] China Acad Chinese Med Sci, Natl Resource Ctr Chinese Mat Med, State Key Lab Dao Di Herbs, Beijing 100700, Peoples R China
[3] Chinese Acad Med Sci, Res Unit DAO DI Herbs, 2019RU57, Beijing 100700, Peoples R China
[4] Anhui Prov Key Lab Res & Dev Chinese Med, Hefei 230012, Peoples R China
[5] Anhui Acad Chinese Med, Inst Conservat & Dev Tradit Chinese Med Resources, Hefei 230012, Peoples R China
基金
中国国家自然科学基金;
关键词
Astragalus mongholicus Bunge; Isoflavonoid; Triterpenoid saponin; Transcriptome; Biosynthesis; DAMMARENEDIOL-II SYNTHASE; RNA-SEQ DATA; FLAVONOID BIOSYNTHESIS; LIQUID-CHROMATOGRAPHY; MEMBRANACEUS; GENES; IDENTIFICATION; ACCUMULATION; QUANTIFICATION; REDUCTASE;
D O I
10.1186/s13007-021-00762-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Astragalus mongholicus Bunge is an important medicinal plant used in traditional Chinese medicine. It is rich in isoflavonoids and triterpenoid saponins. Although these active constituents of A. mongholicus have been discovered for a long time, the genetic basis of isoflavonoid and triterpenoid saponin biosynthesis in this plant is virtually unknown because of the lack of a reference genome. Here, we used a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to identify genes involved in the biosynthetic pathway of secondary metabolites in A. mongholicus. Results In this study, NGS, SMRT sequencing, and targeted compound analysis were combined to investigate the association between isoflavonoid and triterpenoid saponin content, and specific gene expression in the root, stem, and leaves of A. mongholicus. Overall, 643,812 CCS reads were generated, yielding 121,107 non-redundant transcript isoforms with an N50 value of 2124 bp. Based on these highly accurate transcripts, 104,756 (86.50%) transcripts were successfully annotated by any of the seven databases (NR, NT, Swissprot, KEGG, KOG, Pfam and GO). Levels of four isoflavonoids and four astragalosides (triterpenoid saponins) were determined. Forty-four differentially expressed genes (DEGs) involved in isoflavonoid biosynthesis and 44 DEGs from 16 gene families that encode enzymes involved in triterpenoid saponin biosynthesis were identified. Transcription factors (TFs) associated with isoflavonoid and triterpenoid saponin biosynthesis, including 72 MYBs, 53 bHLHs, 64 AP2-EREBPs, and 11 bZIPs, were also identified. The above transcripts showed different expression trends in different plant organs. Conclusions This study provides important genetic information on the A. mongholicus genes that are essential for isoflavonoid and triterpenoid saponin biosynthesis, and provides a basis for developing the medicinal value of this plant.
引用
收藏
页数:16
相关论文
共 63 条
[1]   MYB transcription factor genes as regulators for plant responses: an overview [J].
Ambawat, Supriya ;
Sharma, Poonam ;
Yadav, Neelam R. ;
Yadav, Ram C. .
PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2013, 19 (03) :307-321
[2]   Molecular activities, biosynthesis and evolution of triterpenoid saponins [J].
Augustin, Jorg M. ;
Kuzina, Vera ;
Andersen, Sven B. ;
Bak, Soren .
PHYTOCHEMISTRY, 2011, 72 (06) :435-457
[3]   Astragalus membranaceus: A Review of its Protection Against Inflammation and Gastrointestinal Cancers [J].
Auyeung, Kathy K. ;
Han, Quan-Bin ;
Ko, Joshua K. .
AMERICAN JOURNAL OF CHINESE MEDICINE, 2016, 44 (01) :1-22
[4]   Resolving the complexity of the human genome using single-molecule sequencing [J].
Chaisson, Mark J. P. ;
Huddleston, John ;
Dennis, Megan Y. ;
Sudmant, Peter H. ;
Malig, Maika ;
Hormozdiari, Fereydoun ;
Antonacci, Francesca ;
Surti, Urvashi ;
Sandstrom, Richard ;
Boitano, Matthew ;
Landolin, Jane M. ;
Stamatoyannopoulos, John A. ;
Hunkapiller, Michael W. ;
Korlach, Jonas ;
Eichler, Evan E. .
NATURE, 2015, 517 (7536) :608-U163
[5]   Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao [J].
Chen, Jing ;
Wu, Xue-Ting ;
Xu, Yi-Qin ;
Zhong, Yang ;
Li, Yi-Xue ;
Chen, Jia-Kuan ;
Li, Xuan ;
Nan, Peng .
BMC GENOMICS, 2015, 16
[6]   The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development [J].
Chen, Xiao ;
Bracht, John R. ;
Goldman, Aaron David ;
Dolzhenko, Egor ;
Clay, Derek M. ;
Swart, Estienne C. ;
Perlman, David H. ;
Doak, Thomas G. ;
Stuart, Andrew ;
Amemiya, Chris T. ;
Sebra, Robert P. ;
Landweber, Laura F. .
CELL, 2014, 158 (05) :1187-1198
[7]  
Chen XZ, 2019, BMC PLANT BIOL, V19, DOI [10.1186/s12870-019-1884-x, 10.1186/s12870-019-1812-0]
[8]   DIFFERENTIAL INDUCTION AND SUPPRESSION OF POTATO 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE GENES IN RESPONSE TO PHYTOPHTHORA-INFESTANS AND TO ITS ELICITOR ARACHIDONIC-ACID [J].
CHOI, D ;
WARD, BL ;
BOSTOCK, RM .
PLANT CELL, 1992, 4 (10) :1333-1344
[9]   Blast2GO:: a universal tool for annotation, visualization and analysis in functional genomics research [J].
Conesa, A ;
Götz, S ;
García-Gómez, JM ;
Terol, J ;
Talón, M ;
Robles, M .
BIOINFORMATICS, 2005, 21 (18) :3674-3676
[10]   The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective [J].
Davies, Kevin M. ;
Jibran, Rubina ;
Zhou, Yanfei ;
Albert, Nick W. ;
Brummell, David A. ;
Jordan, Brian R. ;
Bowman, John L. ;
Schwinn, Kathy E. .
FRONTIERS IN PLANT SCIENCE, 2020, 11