Convergence of the stationary distributions of M/M/s/K retrial queue as K tends to infinity

被引:2
|
作者
Shin, Yang Woo [1 ]
机构
[1] Changwon Natl Univ, Dept Stat, Chang Won 641773, Gyeongnam, South Korea
关键词
M/M/s/K retrial queue; M/M/s queue; convergence rate; censored Markov chain;
D O I
10.1016/j.ejor.2007.03.052
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the convergence of the stationary distributions x(K) of M/M/s/K retrial queue to the stationary distribution pi of M/M/s queue as K tends to infinity. It is showed that x(K) converges geometrically to pi in l(1)-sense and the convergence rate is characterized by the traffic intensity rho = lambda/s mu' where lambda and mu are the arrival rate and service rate, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1117
页数:14
相关论文
共 50 条
  • [31] THE TRANSIENT-BEHAVIOR OF THE PH/M/S/K QUEUE
    MACHIHARA, F
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1985, 28 (01) : 1 - 17
  • [32] THE BIAS OPTIMAL K IN THE M/M/1/K QUEUE: AN APPLICATION OF THE DEVIATION MATRIX
    Hautphenne, Sophie
    Haviv, Moshe
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2016, 30 (01) : 61 - 78
  • [33] The M/M/c retrial queue with geometric loss and feedback
    Choi, BD
    Kim, YC
    Lee, YW
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (06) : 41 - 52
  • [34] Analysis of an M/M/1 Retrial Queue with Speed Scaling
    Tuan Phung-Duc
    Rogiest, Wouter
    QUEUEING THEORY AND NETWORK APPLICATIONS, 2016, 383 : 113 - 124
  • [35] THE UNRELIABLE M/M/1 RETRIAL QUEUE IN A RANDOM ENVIRONMENT
    Cordeiro, James D.
    Kharoufeh, Jeffrey P.
    STOCHASTIC MODELS, 2012, 28 (01) : 29 - 48
  • [36] M/M/1 Retrial Queue with Collisions and Transmission Errors
    Lamia Lakaour
    Djamil Aïssani
    Karima Adel-Aissanou
    Kamel Barkaoui
    Methodology and Computing in Applied Probability, 2019, 21 : 1395 - 1406
  • [37] Retrial Queue M/M/N with Impatient Customer in the Orbit
    Danilyuk, Elena
    Vygoskaya, Olga
    Moiseeva, Svetlana
    DISTRIBUTED COMPUTER AND COMMUNICATION NETWORKS (DCCN 2018), 2018, 919 : 493 - 504
  • [38] QUASI-STATIONARY DISTRIBUTIONS OF GI/M/1 QUEUE
    KYPRIANOU, EK
    JOURNAL OF APPLIED PROBABILITY, 1972, 9 (01) : 117 - +
  • [39] A G/M/1 retrial queue with constant retrial rate
    Chesoong Kim
    Valentina Klimenok
    Alexander Dudin
    TOP, 2014, 22 : 509 - 529
  • [40] A transient symmetry analysis for the M/M/1/k queue
    Massey, William A.
    Ekwedike, Emmanuel
    Hampshire, Robert C.
    Pender, Jamol J.
    QUEUEING SYSTEMS, 2023, 103 (1-2) : 1 - 43