Convergence of the stationary distributions of M/M/s/K retrial queue as K tends to infinity

被引:2
作者
Shin, Yang Woo [1 ]
机构
[1] Changwon Natl Univ, Dept Stat, Chang Won 641773, Gyeongnam, South Korea
关键词
M/M/s/K retrial queue; M/M/s queue; convergence rate; censored Markov chain;
D O I
10.1016/j.ejor.2007.03.052
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the convergence of the stationary distributions x(K) of M/M/s/K retrial queue to the stationary distribution pi of M/M/s queue as K tends to infinity. It is showed that x(K) converges geometrically to pi in l(1)-sense and the convergence rate is characterized by the traffic intensity rho = lambda/s mu' where lambda and mu are the arrival rate and service rate, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1117
页数:14
相关论文
共 19 条
[1]  
Bright L., 1995, STOCH MODELS, V11, P497, DOI [10.1080/15326349508807357, DOI 10.1080/15326349508807357]
[2]   Exact convergence rate for the distributions of GI/M/c/K queue as K tends to infinity [J].
Choi, BD ;
Kim, B ;
Kim, J ;
Wee, IS .
QUEUEING SYSTEMS, 2003, 44 (02) :125-136
[3]   Sharp results on convergence rates for the distribution of GI/M/1/K queues as K tends to infinity [J].
Choi, BD ;
Kim, B .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) :1010-1019
[4]   On matrix-geometric solution of nested QBD chains [J].
Choi, SH ;
Kim, B ;
Sohraby, K ;
Choi, BD .
QUEUEING SYSTEMS, 2003, 43 (1-2) :5-28
[5]  
Falin G.I., 1997, RETRIAL QUEUES
[6]  
FREDMAN D, 1977, APPROXIMATING COUNTA
[7]  
Gross D, 1998, FUNDAMENTALS QUEUING
[8]   Ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times [J].
He, QM ;
Li, H ;
Zhao, YQ .
QUEUEING SYSTEMS, 2000, 35 (1-4) :323-347
[9]  
Heyman D. P., 1989, Queueing Systems Theory and Applications, V5, P381, DOI 10.1007/BF01225326
[10]  
Horn R. A., 1986, Matrix analysis