Objective choice of phylogeographic models

被引:11
|
作者
Carstens, Bryan C. [1 ]
Morales, Ariadna E. [1 ]
Jackson, Nathan D. [2 ]
O'Meara, Brian C. [2 ]
机构
[1] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, 318 W 12th Ave, Columbus, OH 43210 USA
[2] Univ Tennessee Knoxville, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Phylogeography; Model selection; Gene flow; Coalescent theory; STATISTICAL PHYLOGEOGRAPHY; INFERENCE; DIVERGENCE; EVOLUTION;
D O I
10.1016/j.ympev.2017.08.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phylogeography seeks to discover the evolutionary processes that have given rise to organismal and genetic diversity. This requires explicit hypotheses (i.e., models) to be evaluated with genetic data in order to identify those hypotheses that best explain the data. In recent years, advancements in the model-based tools used to estimate phylogeographic parameters of interest such as gene flow, divergence time, and relationships among groups have been made. However, given the complexity of these models, available methods can typically only compare a handful of possible hypotheses, requiring researchers to specify in advance the small set of models to consider. Without formal quantitative approaches to model selection, researchers must rely on their intuition to formulate the model space to be explored. We explore the adequacy of intuitive choices made by researchers during the process of data analysis by reanalyzing 20 empirical phylogeographic datasets using PHRAPL, an objective tool for phylogeographic model selection. We show that the best models for most datasets include both gene flow and population divergence parameters, and that species tree methods (which do not consider gene flow) tend to be overly simplistic for many phylogeographic systems. Objective approaches to phylogeographic model selection offer an important complement to researcher intuition.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [41] Phylogeographic model selection using convolutional neural networks
    Fonseca, Emanuel M.
    Colli, Guarino R.
    Werneck, Fernanda P.
    Carstens, Bryan C.
    MOLECULAR ECOLOGY RESOURCES, 2021, 21 (08) : 2661 - 2675
  • [42] A Likelihood Framework for Estimating Phylogeographic History on a Continuous Landscape
    Lemmon, Alan R.
    Lemmon, Emily Moriarty
    SYSTEMATIC BIOLOGY, 2008, 57 (04) : 544 - 561
  • [43] Lizards as model organisms for linking phylogeographic and speciation studies
    Camargo, Arley
    Sinervo, Barry
    Sites, Jack W., Jr.
    MOLECULAR ECOLOGY, 2010, 19 (16) : 3250 - 3270
  • [44] Phylogeographic breaks without geographic barriers to gene flow
    Irwin, DE
    EVOLUTION, 2002, 56 (12) : 2383 - 2394
  • [45] No phylogeographic structure in the circumpolar snowy owl (Bubo scandiacus)
    Gunnhild Marthinsen
    Liv Wennerberg
    Roar Solheim
    Jan T. Lifjeld
    Conservation Genetics, 2009, 10 : 923 - 933
  • [46] Evolution and phylogeographic dissemination of endemic porcine picornaviruses in Vietnam
    Lu, Lu
    Nguyen Van Dung
    Bryant, Juliet E.
    Carrique-Mas, Juan
    Nguyen Van Cuong
    Pham Honh Anh
    Rabaa, Maia A.
    Baker, Stephen
    Simmonds, Peter
    Woolhouse, Mark E.
    VIRUS EVOLUTION, 2016, 2 (01)
  • [47] Holarctic phylogeographic structure of Eurasian wigeon (Mareca penelope)
    Kulikova, I. V.
    Zhuravlev, Y. N.
    Korobitsyn, I. G.
    Nemkova, G. A.
    McCracken, K. G.
    Peters, J. L.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2019, 23 (03): : 362 - 369
  • [48] Does the virus cross the road? Viral phylogeographic patterns among bobcat populations reflect a history of urban development
    Kozakiewicz, Christopher P.
    Burridge, Christopher P.
    Funk, W. Chris
    Craft, Meggan E.
    Crooks, Kevin R.
    Fisher, Robert N.
    Fountain-Jones, Nicholas M.
    Jennings, Megan K.
    Kraberger, Simona J.
    Lee, Justin S.
    Lyren, Lisa M.
    Riley, Seth P. D.
    Serieys, Laurel E. K.
    VandeWoude, Sue
    Carver, Scott
    EVOLUTIONARY APPLICATIONS, 2020, 13 (08): : 1806 - 1817
  • [49] Geogenomic Predictors of Genetree Heterogeneity Explain Phylogeographic and Introgression History: A Case Study in an Amazonian Bird (Thamnophilus aethiops)
    Musher, Lukas J.
    Del-Rio, Glaucia
    Marcondes, Rafael S.
    Brumfield, Robb T.
    Bravo, Gustavo A.
    Thom, Gregory
    SYSTEMATIC BIOLOGY, 2023, : 36 - 52
  • [50] Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity
    Arcidiacono, Peter
    Miller, Robert A.
    ECONOMETRICA, 2011, 79 (06) : 1823 - 1867