Objective choice of phylogeographic models

被引:11
|
作者
Carstens, Bryan C. [1 ]
Morales, Ariadna E. [1 ]
Jackson, Nathan D. [2 ]
O'Meara, Brian C. [2 ]
机构
[1] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, 318 W 12th Ave, Columbus, OH 43210 USA
[2] Univ Tennessee Knoxville, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Phylogeography; Model selection; Gene flow; Coalescent theory; STATISTICAL PHYLOGEOGRAPHY; INFERENCE; DIVERGENCE; EVOLUTION;
D O I
10.1016/j.ympev.2017.08.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phylogeography seeks to discover the evolutionary processes that have given rise to organismal and genetic diversity. This requires explicit hypotheses (i.e., models) to be evaluated with genetic data in order to identify those hypotheses that best explain the data. In recent years, advancements in the model-based tools used to estimate phylogeographic parameters of interest such as gene flow, divergence time, and relationships among groups have been made. However, given the complexity of these models, available methods can typically only compare a handful of possible hypotheses, requiring researchers to specify in advance the small set of models to consider. Without formal quantitative approaches to model selection, researchers must rely on their intuition to formulate the model space to be explored. We explore the adequacy of intuitive choices made by researchers during the process of data analysis by reanalyzing 20 empirical phylogeographic datasets using PHRAPL, an objective tool for phylogeographic model selection. We show that the best models for most datasets include both gene flow and population divergence parameters, and that species tree methods (which do not consider gene flow) tend to be overly simplistic for many phylogeographic systems. Objective approaches to phylogeographic model selection offer an important complement to researcher intuition.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [1] Evaluating Nested Clade Phylogeographic Analysis under Models of Restricted Gene Flow
    Panchal, Mahesh
    Beaumont, Mark A.
    SYSTEMATIC BIOLOGY, 2010, 59 (04) : 415 - 432
  • [2] Phylogeographic history of Japanese macaques
    Ito, Tsuyoshi
    Hayakawa, Takashi
    Suzuki-Hashido, Nami
    Hamada, Yuzuru
    Kurihara, Yosuke
    Hanya, Goro
    Kaneko, Akihisa
    Natsume, Takayoshi
    Aisu, Seitaro
    Honda, Takeaki
    Yachimori, Syuji
    Anezaki, Tomoko
    Omi, Toshinori
    Hayama, Shin-ichi
    Tanaka, Mikiko
    Wakamori, Hikaru
    Imai, Hiroo
    Kawamoto, Yoshi
    JOURNAL OF BIOGEOGRAPHY, 2021, 48 (06) : 1420 - 1431
  • [3] Phylogeographic model selection leads to insight into the evolutionary history of four-eyed frogs
    Thome, Maria Tereza C.
    Carstens, Bryan C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (29) : 8010 - 8017
  • [4] Local Adaptation along Smooth Ecological Gradients Causes Phylogeographic Breaks and Phenotypic Clustering
    Irwin, Darren E.
    AMERICAN NATURALIST, 2012, 180 (01) : 35 - 49
  • [5] Multilocus test of the absence of mtDNA phylogeographic structure in a widespread wader, the Common Sandpiper (Actitis hypoleucos)
    Hung, Chih-Ming
    Drovetski, Sergei V.
    Zink, Robert M.
    JOURNAL OF ORNITHOLOGY, 2013, 154 (04): : 1105 - 1113
  • [6] Phylogeographic Approaches to Characterize the Emergence of Plant Pathogens
    Rasmussen, David A.
    Grunwald, Niklaus J.
    PHYTOPATHOLOGY, 2021, 111 (01) : 68 - 77
  • [7] Reproductive isolation between phylogeographic lineages scales with divergence
    Singhal, Sonal
    Moritz, Craig
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1772)
  • [8] BPEC: An R Package for Bayesian Phylogeographic and Ecological Clustering
    Manolopoulou, Ioanna
    Hille, Axel
    Emerson, Brent
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 92 (05): : 1 - 32
  • [9] No phylogeographic structure in the circumpolar snowy owl (Bubo scandiacus)
    Marthinsen, Gunnhild
    Wennerberg, Liv
    Solheim, Roar
    Lifjeld, Jan T.
    CONSERVATION GENETICS, 2009, 10 (04) : 923 - 933
  • [10] Mechanisms of global diversification in the brown booby (Sula leucogaster) revealed by uniting statistical phylogeographic and multilocus phylogenetic methods
    Morris-Pocock, J. A.
    Anderson, D. J.
    Friesen, V. L.
    MOLECULAR ECOLOGY, 2011, 20 (13) : 2835 - 2850