Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket

被引:54
作者
Bejanin, J. H. [1 ,2 ]
McConkey, T. G. [1 ,3 ]
Rinehart, J. R. [1 ,2 ]
Earnest, C. T. [1 ,2 ]
Mcrae, C. R. H. [1 ,2 ]
Shiri, D. [1 ,2 ,7 ]
Bateman, J. D. [1 ,2 ,8 ]
Rohanizadegan, Y. [1 ,2 ]
Penava, B. [4 ]
Breul, P. [4 ]
Royak, S. [4 ]
Zapatka, M. [5 ]
Fowler, A. G. [6 ]
Mariantoni, M. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[4] INGUN Prufmittelbau GmbH, Max Stromeyer Str 162, D-78467 Constance, Germany
[5] INGUN USA Inc, 252 Latitude Lane,Suite 102, Lake Wylie, SC 29710 USA
[6] Google Inc, Santa Barbara, CA 93117 USA
[7] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[8] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
关键词
SILICON; CIRCUITS;
D O I
10.1103/PhysRevApplied.6.044010
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires-the three-dimensional wires-that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Omega, an impedance mismatch of approximately 10 Omega, and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a quantum processor with a (10 x 10)-qubit lattice, which would allow for the realization of a simple quantum memory.
引用
收藏
页数:29
相关论文
共 72 条
[1]  
Abraham David W., 2015, U.S. Patent, Patent No. [No. 8,972,921, 8972921]
[2]  
Abraham David W., 2015, U.S. Patent, Patent No. [13/838,324, 13838324]
[3]  
Abraham David W., 2016, U.S. Patent, Patent No. [No. 13/838,261, 13838261]
[4]  
[Anonymous], P 74 ARFTG MICR MEAS
[5]  
[Anonymous], SIM SOFTW US HIGH FR
[6]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[7]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[8]   Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits [J].
Barends, R. ;
Wenner, J. ;
Lenander, M. ;
Chen, Y. ;
Bialczak, R. C. ;
Kelly, J. ;
Lucero, E. ;
O'Malley, P. ;
Mariantoni, M. ;
Sank, D. ;
Wang, H. ;
White, T. C. ;
Yin, Y. ;
Zhao, J. ;
Cleland, A. N. ;
Martinis, John M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[9]  
Barends R., 2009, THESIS
[10]  
Bogatin E., 2003, SIGNAL INTEGRITY SIM