Optimal obstacle control problem for semilinear evolutionary bilateral variational inequalities

被引:5
作者
Chen, QH [1 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary bilateral variational inequality; optimal obstacle control; existence; optimality condition;
D O I
10.1016/j.jmaa.2005.01.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with an optimal control problem for semilinear evolutionary bilateral variational inequalities. The pair of the upper and lower obstacles is taken as the control and the corresponding state is chosen close to a desired target profile with the norms of the obstacles not too large. Existence and optimality conditions for the problem are derived. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:677 / 690
页数:14
相关论文
共 24 条
[1]  
Adams D.R., 2002, APPL MATH OPT, V47, P59
[2]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[3]  
[Anonymous], 1988, APPL MATH SCI
[4]  
Barbu V., 1993, ANAL CONTROL NONLINE
[5]  
Barbu V, 1984, Optimal Control of Variational Inequalities
[6]  
BERGOUNIOUX M, IN PRESS SIAM J CONT
[7]  
BERGOUNIOUX M, IN PRESS POSITIVITY
[8]   PONTRYAGIN PRINCIPLE IN THE CONTROL OF SEMILINEAR ELLIPTIC VARIATIONAL-INEQUALITIES [J].
BONNANS, JF ;
TIBA, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (03) :299-312
[9]   Indirect obstacle minimax control for elliptic variational inequalities [J].
Chen, Q .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (02) :337-359
[10]   Minimax control of an elliptic variational bilateral problem [J].
Chen, QH .
ANZIAM JOURNAL, 2003, 44 :539-559